Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson's disease identification

dc.contributor.authorPereira, Clayton R.
dc.contributor.authorPereira, Danilo R.
dc.contributor.authorRosa, Gustavo H. [UNESP]
dc.contributor.authorAlbuquerque, Victor H.C.
dc.contributor.authorWeber, Silke A.T. [UNESP]
dc.contributor.authorHook, Christian
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUNOESTE – University of Western São Paulo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNIFOR – Graduate Program in Applied Informatics
dc.contributor.institutionOTH – Ostbayerische Technische Hochschule
dc.date.accessioned2018-12-11T17:36:43Z
dc.date.available2018-12-11T17:36:43Z
dc.date.issued2018-05-01
dc.description.abstractBackground and objective: Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. Methods: In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. Results: The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. Conclusions: The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features.en
dc.description.affiliationUFSCAR – Federal University of São Carlos Department of Computing
dc.description.affiliationUNOESTE – University of Western São Paulo
dc.description.affiliationUNESP – São Paulo State University School of Sciences
dc.description.affiliationUNIFOR – Graduate Program in Applied Informatics
dc.description.affiliationUNESP – São Paulo State University Botucatu Medical School
dc.description.affiliationOTH – Ostbayerische Technische Hochschule
dc.description.affiliationUnespUNESP – São Paulo State University School of Sciences
dc.description.affiliationUnespUNESP – São Paulo State University Botucatu Medical School
dc.format.extent67-77
dc.identifierhttp://dx.doi.org/10.1016/j.artmed.2018.04.001
dc.identifier.citationArtificial Intelligence in Medicine, v. 87, p. 67-77.
dc.identifier.doi10.1016/j.artmed.2018.04.001
dc.identifier.file2-s2.0-85045469054.pdf
dc.identifier.issn1873-2860
dc.identifier.issn0933-3657
dc.identifier.scopus2-s2.0-85045469054
dc.identifier.urihttp://hdl.handle.net/11449/179778
dc.language.isoeng
dc.relation.ispartofArtificial Intelligence in Medicine
dc.relation.ispartofsjr0,766
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConvolutional neural networks
dc.subjectHandwritten dynamics
dc.subjectParkinson's disease
dc.titleHandwritten dynamics assessment through convolutional neural networks: An application to Parkinson's disease identificationen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85045469054.pdf
Tamanho:
4.01 MB
Formato:
Adobe Portable Document Format
Descrição: