Publicação:
Unveiling phase transitions with machine learning

dc.contributor.authorCanabarro, Askery
dc.contributor.authorFanchini, Felipe Fernandes [UNESP]
dc.contributor.authorMalvezzi, André Luiz [UNESP]
dc.contributor.authorPereira, Rodrigo
dc.contributor.authorChaves, Rafael
dc.contributor.institutionFederal University of Rio Grande Do Norte
dc.contributor.institutionUniversidade Federal de Alagoas
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-30T18:37:04Z
dc.date.available2022-04-30T18:37:04Z
dc.date.issued2019-07-22
dc.description.abstractThe classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems.en
dc.description.affiliationInternational Institute of Physics Federal University of Rio Grande Do Norte
dc.description.affiliationGrupo de Física da Matéria Condensada Núcleo de Ciências Exatas NCEx Campus Arapiraca Universidade Federal de Alagoas
dc.description.affiliationFaculdade de Ciências Universidade Estadual Paulista
dc.description.affiliationDepartamento de Física Teórica e Experimental Federal University of Rio Grande Do Norte
dc.description.affiliationSchool of Science and Technology Federal University of Rio Grande Do Norte
dc.description.affiliationUnespFaculdade de Ciências Universidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.1103/PhysRevB.100.045129
dc.identifier.citationPhysical Review B, v. 100, n. 4, 2019.
dc.identifier.doi10.1103/PhysRevB.100.045129
dc.identifier.issn2469-9969
dc.identifier.issn2469-9950
dc.identifier.scopus2-s2.0-85070205339
dc.identifier.urihttp://hdl.handle.net/11449/232898
dc.language.isoeng
dc.relation.ispartofPhysical Review B
dc.sourceScopus
dc.titleUnveiling phase transitions with machine learningen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentFísica - FCpt

Arquivos