Publicação: Unveiling phase transitions with machine learning
dc.contributor.author | Canabarro, Askery | |
dc.contributor.author | Fanchini, Felipe Fernandes [UNESP] | |
dc.contributor.author | Malvezzi, André Luiz [UNESP] | |
dc.contributor.author | Pereira, Rodrigo | |
dc.contributor.author | Chaves, Rafael | |
dc.contributor.institution | Federal University of Rio Grande Do Norte | |
dc.contributor.institution | Universidade Federal de Alagoas | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-30T18:37:04Z | |
dc.date.available | 2022-04-30T18:37:04Z | |
dc.date.issued | 2019-07-22 | |
dc.description.abstract | The classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems. | en |
dc.description.affiliation | International Institute of Physics Federal University of Rio Grande Do Norte | |
dc.description.affiliation | Grupo de Física da Matéria Condensada Núcleo de Ciências Exatas NCEx Campus Arapiraca Universidade Federal de Alagoas | |
dc.description.affiliation | Faculdade de Ciências Universidade Estadual Paulista | |
dc.description.affiliation | Departamento de Física Teórica e Experimental Federal University of Rio Grande Do Norte | |
dc.description.affiliation | School of Science and Technology Federal University of Rio Grande Do Norte | |
dc.description.affiliationUnesp | Faculdade de Ciências Universidade Estadual Paulista | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevB.100.045129 | |
dc.identifier.citation | Physical Review B, v. 100, n. 4, 2019. | |
dc.identifier.doi | 10.1103/PhysRevB.100.045129 | |
dc.identifier.issn | 2469-9969 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.scopus | 2-s2.0-85070205339 | |
dc.identifier.uri | http://hdl.handle.net/11449/232898 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review B | |
dc.source | Scopus | |
dc.title | Unveiling phase transitions with machine learning | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.department | Física - FC | pt |