River sediment yield classification using remote sensing imagery
dc.contributor.author | Pisani, R. | |
dc.contributor.author | Costa, K. [UNESP] | |
dc.contributor.author | Rosa, G. [UNESP] | |
dc.contributor.author | Pereira, D. [UNESP] | |
dc.contributor.author | Papa, J. [UNESP] | |
dc.contributor.author | Tavares, J. M.R.S. | |
dc.contributor.institution | Natural Sciences Institute | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Do Porto Faculdade de Engenharia | |
dc.date.accessioned | 2022-04-28T19:05:59Z | |
dc.date.available | 2022-04-28T19:05:59Z | |
dc.date.issued | 2017-02-28 | |
dc.description.abstract | The monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some stateof-the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research. | en |
dc.description.affiliation | Federal University of Alfenas Natural Sciences Institute | |
dc.description.affiliation | Sao Paulo State University Department of Computing | |
dc.description.affiliation | Universidade Do Porto Faculdade de Engenharia | |
dc.description.affiliationUnesp | Sao Paulo State University Department of Computing | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: #2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: #2015/00801-9 | |
dc.description.sponsorshipId | FAPESP: #2015/25739-4 | |
dc.identifier | http://dx.doi.org/10.1109/PRRS.2016.7867014 | |
dc.identifier.citation | 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016. | |
dc.identifier.doi | 10.1109/PRRS.2016.7867014 | |
dc.identifier.scopus | 2-s2.0-85017005188 | |
dc.identifier.uri | http://hdl.handle.net/11449/220822 | |
dc.language.iso | eng | |
dc.relation.ispartof | 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016 | |
dc.source | Scopus | |
dc.subject | Machine Learning | |
dc.subject | Optimum-Path Forest | |
dc.subject | Sediment Yield | |
dc.title | River sediment yield classification using remote sensing imagery | en |
dc.type | Trabalho apresentado em evento |