River sediment yield classification using remote sensing imagery

dc.contributor.authorPisani, R.
dc.contributor.authorCosta, K. [UNESP]
dc.contributor.authorRosa, G. [UNESP]
dc.contributor.authorPereira, D. [UNESP]
dc.contributor.authorPapa, J. [UNESP]
dc.contributor.authorTavares, J. M.R.S.
dc.contributor.institutionNatural Sciences Institute
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Do Porto Faculdade de Engenharia
dc.date.accessioned2022-04-28T19:05:59Z
dc.date.available2022-04-28T19:05:59Z
dc.date.issued2017-02-28
dc.description.abstractThe monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some stateof-the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research.en
dc.description.affiliationFederal University of Alfenas Natural Sciences Institute
dc.description.affiliationSao Paulo State University Department of Computing
dc.description.affiliationUniversidade Do Porto Faculdade de Engenharia
dc.description.affiliationUnespSao Paulo State University Department of Computing
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2014/16250-9
dc.description.sponsorshipIdFAPESP: #2015/00801-9
dc.description.sponsorshipIdFAPESP: #2015/25739-4
dc.identifierhttp://dx.doi.org/10.1109/PRRS.2016.7867014
dc.identifier.citation2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016.
dc.identifier.doi10.1109/PRRS.2016.7867014
dc.identifier.scopus2-s2.0-85017005188
dc.identifier.urihttp://hdl.handle.net/11449/220822
dc.language.isoeng
dc.relation.ispartof2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016
dc.sourceScopus
dc.subjectMachine Learning
dc.subjectOptimum-Path Forest
dc.subjectSediment Yield
dc.titleRiver sediment yield classification using remote sensing imageryen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções