Layered graphene/hexagonal boron nitride nanosheets (Gr/h-BNNs) applied to the CO2 photoconversion into methanol

dc.contributor.authorGomes, Paulo V.R.
dc.contributor.authorAzeredo, Nathalia F.B.
dc.contributor.authorGarcia, Luis M.S.
dc.contributor.authorZambiazi, Priscilla J.
dc.contributor.authorMorselli, Giovanni R. [UNESP]
dc.contributor.authorAndo, Rômulo A. [UNESP]
dc.contributor.authorOtubo, Larissa
dc.contributor.authorLazar, Dolores R.R.
dc.contributor.authorSouza, Rodrigo F. B. de
dc.contributor.authorRodrigues, Debora F.
dc.contributor.authorNeto, Almir O.
dc.contributor.institutionInstituto de Pesquisas Energéticas e Nucleares
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Houston
dc.date.accessioned2023-03-01T20:24:09Z
dc.date.available2023-03-01T20:24:09Z
dc.date.issued2022-12-01
dc.description.abstractPhotocatalysts based on heterostructure 2D materials show promising properties for the construction of optoelectronic devices for selective reduction of CO2 to methanol. In this sense, a fast and simple method to produce 2D hexagonal hybrid BN nanosheets (h-BNNs) doped with graphene heterostructure by van der Waals interactions was developed. The method used plasma created by a Tesla coil. The Gr/h-BNNs hybrid material obtained presented a stacking structure containing h-BNNs and graphene layers. The structure included doping of carbon atoms along the h-BN edge structures. The doping of the h-BN nanostructure with graphene sheets, conferred adaptable optical properties to the semiconductor, resulting in band gap energy values favorable to photocatalysis. The reaction promoted selective reduction of CO2 to methanol, and synthesis of other products, such as formaldehyde and formic acid, due to multielectronic transfer processes.en
dc.description.affiliationInstituto de Pesquisas Energéticas e Nucleares, Av. Prof. LineuPrestes, 2242
dc.description.affiliationLaboratório de Espectroscopia Molecular Departamento de Química Fundamental Instituto de Química Universidade Estadual de São Paulo – USP, Av. Prof. Lineu Prestes, 748
dc.description.affiliationDepartment of Civil and Environmental Engineering University of Houston
dc.description.affiliationUnespLaboratório de Espectroscopia Molecular Departamento de Química Fundamental Instituto de Química Universidade Estadual de São Paulo – USP, Av. Prof. Lineu Prestes, 748
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2017/11937-4
dc.description.sponsorshipIdCNPq: 302709/2020-7
dc.identifierhttp://dx.doi.org/10.1016/j.apmt.2022.101605
dc.identifier.citationApplied Materials Today, v. 29.
dc.identifier.doi10.1016/j.apmt.2022.101605
dc.identifier.issn2352-9407
dc.identifier.scopus2-s2.0-85135381603
dc.identifier.urihttp://hdl.handle.net/11449/240592
dc.language.isoeng
dc.relation.ispartofApplied Materials Today
dc.sourceScopus
dc.subjectBoron-doped
dc.subjectCO2 photoreduction
dc.subjectHybrid nanofilms
dc.subjectNon-thermal plasma source
dc.subjectWhite graphene
dc.titleLayered graphene/hexagonal boron nitride nanosheets (Gr/h-BNNs) applied to the CO2 photoconversion into methanolen
dc.typeArtigo
unesp.author.orcid0000-0002-9287-6071[11]

Arquivos

Coleções