SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously
dc.contributor.author | Aragao, Dunfrey | |
dc.contributor.author | Nascimento, Tiago | |
dc.contributor.author | Mondini, Adriano [UNESP] | |
dc.contributor.author | Paiva, A. C. | |
dc.contributor.author | Conci, A. | |
dc.contributor.author | Braz, G. | |
dc.contributor.author | Almeida, JDS | |
dc.contributor.author | Fernandes, LAF | |
dc.contributor.institution | Univ Fed Paraiba | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T11:50:57Z | |
dc.date.available | 2021-06-25T11:50:57Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | One of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and upsampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet. | en |
dc.description.affiliation | Univ Fed Paraiba, Joao Pessoa, Paraiba, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Sao Paulo, Brazil | |
dc.format.extent | 217-222 | |
dc.identifier.citation | Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 217-222, 2020. | |
dc.identifier.issn | 2157-8672 | |
dc.identifier.uri | http://hdl.handle.net/11449/209189 | |
dc.identifier.wos | WOS:000615731300038 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition | |
dc.source | Web of Science | |
dc.subject | Dataset | |
dc.subject | depth-scene | |
dc.subject | pose | |
dc.subject | regression | |
dc.subject | robot | |
dc.title | SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee |