SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously

dc.contributor.authorAragao, Dunfrey
dc.contributor.authorNascimento, Tiago
dc.contributor.authorMondini, Adriano [UNESP]
dc.contributor.authorPaiva, A. C.
dc.contributor.authorConci, A.
dc.contributor.authorBraz, G.
dc.contributor.authorAlmeida, JDS
dc.contributor.authorFernandes, LAF
dc.contributor.institutionUniv Fed Paraiba
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:50:57Z
dc.date.available2021-06-25T11:50:57Z
dc.date.issued2020-01-01
dc.description.abstractOne of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and upsampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet.en
dc.description.affiliationUniv Fed Paraiba, Joao Pessoa, Paraiba, Brazil
dc.description.affiliationUniv Estadual Paulista, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Sao Paulo, Brazil
dc.format.extent217-222
dc.identifier.citationProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 217-222, 2020.
dc.identifier.issn2157-8672
dc.identifier.urihttp://hdl.handle.net/11449/209189
dc.identifier.wosWOS:000615731300038
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartofProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition
dc.sourceWeb of Science
dc.subjectDataset
dc.subjectdepth-scene
dc.subjectpose
dc.subjectregression
dc.subjectrobot
dc.titleSpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneouslyen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee

Arquivos

Coleções