Convergence towards asymptotic state in 1-D mappings: a scaling investigation

Nenhuma Miniatura disponível

Data

2015-06-26

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Decay to asymptotic steady state in one-dimensional logistic-like mappings is characterized by considering a phenomenological description supported by numerical simulations and confirmed by a theoretical description. As the control parameter is varied bifurcations in the fixed points appear. We verified at the bifurcation point in both; the transcritical, pitchfork and period-doubling bifurcations, that the decay for the stationary point is characterized via a homogeneous function with three critical exponents depending on the nonlinearity of the mapping. Near the bifurcation the decay to the fixed point is exponential with a relaxation time given by a power law whose slope is independent of the nonlinearity. The formalism is general and can be extended to other dissipative mappings. (C) 2015 Elsevier B.V. All rights reserved.

Descrição

Idioma

Inglês

Como citar

Physics Letters A, v. 379, n. 18-19, p. 1246-1250, 2015.

Itens relacionados