Reinforcing learning in Deep Belief Networks through nature-inspired optimization

dc.contributor.authorRoder, Mateus [UNESP]
dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorde Rosa, Gustavo H. [UNESP]
dc.contributor.authorde Albuquerque, Victor Hugo C.
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Ceará
dc.contributor.institutionScience and Technology of Ceará
dc.date.accessioned2022-05-01T04:26:36Z
dc.date.available2022-05-01T04:26:36Z
dc.date.issued2021-09-01
dc.description.abstractDeep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introducing residual connections, thus assisting gradient propagation. However, such a subject of study has been poorly considered for Deep Belief Networks. In this paper, we propose a weighted layer-wise information reinforcement approach concerning Deep Belief Networks. Moreover, we also introduce metaheuristic optimization to select proper weight connections that improve the network's learning capabilities. Experiments conducted over public datasets corroborate the effectiveness of the proposed approach in image classification tasks.en
dc.description.affiliationDepartment of Computing São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationGraduate Program on Teleinformatics Engineering Federal University of Ceará, Fortaleza
dc.description.affiliationGraduate Program on Telecommunication Engineering Federal Institute of Education Science and Technology of Ceará
dc.description.affiliationUnespDepartment of Computing São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2017/25908-6
dc.description.sponsorshipIdFAPESP: #2018/21934-5
dc.description.sponsorshipIdFAPESP: #2019/02205-5
dc.description.sponsorshipIdFAPESP: #2019/07665-4
dc.description.sponsorshipIdFAPESP: #2019/07825-1
dc.description.sponsorshipIdCNPq: #304315/2017-6
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.description.sponsorshipIdCNPq: #427968/2018-6
dc.description.sponsorshipIdCNPq: #430274/2018-1
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2021.107466
dc.identifier.citationApplied Soft Computing, v. 108.
dc.identifier.doi10.1016/j.asoc.2021.107466
dc.identifier.issn1568-4946
dc.identifier.scopus2-s2.0-85105581286
dc.identifier.urihttp://hdl.handle.net/11449/233128
dc.language.isoeng
dc.relation.ispartofApplied Soft Computing
dc.sourceScopus
dc.subjectDeep Belief Network
dc.subjectMetaheuristic optimization
dc.subjectOptimization
dc.subjectResidual networks
dc.subjectRestricted Boltzmann machines
dc.titleReinforcing learning in Deep Belief Networks through nature-inspired optimizationen
dc.typeArtigo
unesp.author.orcid0000-0002-3112-5290[1]
unesp.author.orcid0000-0003-3529-3109[2]
unesp.author.orcid0000-0002-6442-8343[3]
unesp.author.orcid0000-0003-3886-4309 0000-0003-3886-4309[4]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos