Deep learning techniques for recommender systems based on collaborative filtering
Nenhuma Miniatura disponível
Data
2020-11-14
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Wiley-Blackwell
Tipo
Resenha
Direito de acesso
Resumo
In the Big Data Era, recommender systems perform a fundamental role in data management and information filtering. In this context, Collaborative Filtering (CF) persists as one of the most prominent strategies to effectively deal with large datasets and is capable of offering users interesting content in a recommendation fashion. Nevertheless, it is well-known CF recommenders suffer from data sparsity, mainly in cold-start scenarios, substantially reducing the quality of recommendations. In the vast literature about the aforementioned topic, there are numerous solutions, in which the state-of-the-art contributions are, in some sense, conditioned or associated with traditional CF methods such as Matrix Factorization (MF), that is, they rely on linear optimization procedures to model users and items into low-dimensional embeddings. To overcome the aforementioned challenges, there has been an increasing number of studies exploring deep learning techniques in the CF context for latent factor modelling. In this research, authors conduct a systematic review focusing on state-of-the-art literature on deep learning techniques applied in collaborative filtering recommendation, and also featuring primary studies related to mitigating the cold start problem. Additionally, authors considered the diverse non-linear modelling strategies to deal with rating data and side information, the combination of deep learning techniques with traditional CF-based linear methods, and an overview of the most used public datasets and evaluation metrics concerning CF scenarios.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Expert Systems. Hoboken: Wiley, v. 37, n. 6, 21 p., 2020.