Relaxation oscillation in planar discontinuous piecewise smooth fast–slow systems
dc.contributor.author | Toniol Cardin, Pedro [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-28T19:49:39Z | |
dc.date.available | 2022-04-28T19:49:39Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | This paper provides a geometric analysis of relaxation oscillations in the context of planar fast–slow systems with a discontinuous right-hand side. We give conditions that guarantee the existence of a stable crossing limit cycle Γ ϵ when the singular perturbation parameter ϵ is positive and small enough. Moreover, in the singular limit ϵ → 0, the cycle Γ ϵ converges to a crossing closed singular trajectory. We also study the regularization of the crossing relaxation oscillator Γ ϵ and show that a (smooth) relaxation oscillation exists for the regularized vector field, which is a smooth fast–slow vector field with singular perturbation parameter ϵ. Our approach uses tools in geometric singular perturbation theory. We demonstrate the results to a number of examples including a model of an arch bridge with nonlinear viscous damping. | en |
dc.description.affiliation | Departamento de Matemática Faculdade de Engenharia Universidade Estadual Paulista (UNESP) | |
dc.description.affiliationUnesp | Departamento de Matemática Faculdade de Engenharia Universidade Estadual Paulista (UNESP) | |
dc.identifier | http://dx.doi.org/10.1063/5.0048340 | |
dc.identifier.citation | Chaos, v. 32, n. 1, 2022. | |
dc.identifier.doi | 10.1063/5.0048340 | |
dc.identifier.issn | 1089-7682 | |
dc.identifier.issn | 1054-1500 | |
dc.identifier.scopus | 2-s2.0-85122995654 | |
dc.identifier.uri | http://hdl.handle.net/11449/223274 | |
dc.language.iso | eng | |
dc.relation.ispartof | Chaos | |
dc.source | Scopus | |
dc.title | Relaxation oscillation in planar discontinuous piecewise smooth fast–slow systems | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0002-8723-8200[1] |