Relaxation oscillation in planar discontinuous piecewise smooth fast–slow systems

dc.contributor.authorToniol Cardin, Pedro [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:49:39Z
dc.date.available2022-04-28T19:49:39Z
dc.date.issued2022-01-01
dc.description.abstractThis paper provides a geometric analysis of relaxation oscillations in the context of planar fast–slow systems with a discontinuous right-hand side. We give conditions that guarantee the existence of a stable crossing limit cycle Γ ϵ when the singular perturbation parameter ϵ is positive and small enough. Moreover, in the singular limit ϵ → 0, the cycle Γ ϵ converges to a crossing closed singular trajectory. We also study the regularization of the crossing relaxation oscillator Γ ϵ and show that a (smooth) relaxation oscillation exists for the regularized vector field, which is a smooth fast–slow vector field with singular perturbation parameter ϵ. Our approach uses tools in geometric singular perturbation theory. We demonstrate the results to a number of examples including a model of an arch bridge with nonlinear viscous damping.en
dc.description.affiliationDepartamento de Matemática Faculdade de Engenharia Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespDepartamento de Matemática Faculdade de Engenharia Universidade Estadual Paulista (UNESP)
dc.identifierhttp://dx.doi.org/10.1063/5.0048340
dc.identifier.citationChaos, v. 32, n. 1, 2022.
dc.identifier.doi10.1063/5.0048340
dc.identifier.issn1089-7682
dc.identifier.issn1054-1500
dc.identifier.scopus2-s2.0-85122995654
dc.identifier.urihttp://hdl.handle.net/11449/223274
dc.language.isoeng
dc.relation.ispartofChaos
dc.sourceScopus
dc.titleRelaxation oscillation in planar discontinuous piecewise smooth fast–slow systemsen
dc.typeArtigo
unesp.author.orcid0000-0002-8723-8200[1]

Arquivos

Coleções