Improving optimum-path forest classification using confidence measures

dc.contributor.authorFernandes, Silas E. N.
dc.contributor.authorScheirer, Walter
dc.contributor.authorCox, David D.
dc.contributor.authorPapa, Jo�o Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionHarvard University
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:43:38Z
dc.date.available2018-12-11T16:43:38Z
dc.date.issued2015-01-01
dc.description.abstractMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter”, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.en
dc.description.affiliationDepartment of Computing Federal University of S�o Carlos UFSCar Rodovia Washington Lu�s, Km 235-SP 310
dc.description.affiliationDepartment of Molecular and Cellular Biology Harvard University, 52 Oxford St
dc.description.affiliationDepartment of Computing Univ Estadual Paulista-UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespDepartment of Computing Univ Estadual Paulista-UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.format.extent619-625
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-16811-1_22
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 619-625.
dc.identifier.doi10.1007/978-3-319-16811-1_22
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-84983604654
dc.identifier.urihttp://hdl.handle.net/11449/168923
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConfidence measures
dc.subjectOptimum-path forest
dc.subjectSupervised learning
dc.titleImproving optimum-path forest classification using confidence measuresen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções