Repository logo
 

Publication:
Study of a fringing field biosensor tunnel-FET

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Abstract

In this paper, we present a comprehensive study of the Fringing Field Biosensor Tunnel-FET (Bio-TFET) device based on 2Ddevice simulation. The presence of a biomaterial with a distinct dielectric constant (k, where ∈ = k∗∈0) on the underlap region (LUD) between gate and drain affects the ambipolar drain current (ID). The Bio-TFET can be observed in the ambipolar region (i.e., for negative gate voltage in an n type Bio-nTFET device) due to the variation of the k, biomaterial thicknesses (tBio), the LUD, and/ or the presence of charges (QBio) into the biomaterial/silicon interface. The results show that the maximum sensitivity is observed when LUD= 30 nm (3 orders of magnitude higher compared with LUDof 25 nm lower or higher than 30 nm). When tBioincreases from 10 nm to 30 nm (for k = 10), the sensitivity increases up to 1 orders of magnitude. The presence of QBiointo the biomaterial also increases the sensitivity of 60 times for a fixed value of tBio= 30 nm and k = 10 and QBiochanging from 1 × 1010cm-2to 1 × 1012cm-2. The results show that the sensitivity of the fringing field Bio-nTFET is strongly dependent on the tunneling length modulation. c 2021 The Author(s).

Description

Keywords

Language

English

Citation

ECS Journal of Solid State Science and Technology, v. 10, n. 1, 2021.

Related itens

Sponsors

Collections

Units

Departments

Undergraduate courses

Graduate programs