Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

From explanations to feature selection: assessing SHAP values as feature selection mechanism

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Explainability has become one of the most discussed topics in machine learning research in recent years, and although a lot of methodologies that try to provide explanations to black-box models have been proposed to address such an issue, little discussion has been made on the pre-processing steps involving the pipeline of development of machine learning solutions, such as feature selection. In this work, we evaluate a game-theoretic approach used to explain the output of any machine learning model, SHAP, as a feature selection mechanism. In the experiments, we show that besides being able to explain the decisions of a model, it achieves better results than three commonly used feature selection algorithms.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

2020 33rd Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi 2020). New York: Ieee, p. 340-347, 2020.

Itens relacionados