Light absorption, light use efficiency and productivity of 16 contrasted genotypes of several Eucalyptus species along a 6-year rotation in Brazil
Nenhuma Miniatura disponível
Data
2019-10-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
Stemwood productivity in forest ecosystems depends on the amount of light absorbed by the trees (APAR) and on the Light Use Efficiency (LUE), i.e. the amount of stemwood produced per amount of absorbed light. In fertilized Eucalyptus plantations of Brazil, growth is expected to be strongly limited by light absorption in the first years after planting, when trees can benefit from high soil water stocks, recharged after clearcutting the previous stand. Other limiting factors, such as water or nutrient shortage are thought to increase in importance after canopy closure, and changes in allocation patterns are expected, affecting the LUE. Studying changes in APAR and LUE along a complete rotation is paramount for gaining insight into the mechanisms that drive the inter- and intra-genotype variabilities of productivity and stemwood biomass at the time of harvest. Here, we present a 6-year survey of productivity, APAR and LUE of 16 Eucalyptus genotypes of several species used in commercial plantations and planted in 10 randomized replications in the São Paulo Region, Brazil. APAR was estimated using the MAESTRA tridimensional model parameterized at tree scale for each tree in each plot (a total of 16,000 trees) using local measurements of leaf and canopy properties. Stand growth was estimated based on allometric relationships established through successive destructive biomass measurements at the study site. Allometric relationships predicting biomass of tree components, leaf surface, crown dimension and leaf inclination angle distribution throughout the rotation for the 16 productive genotypes are shown. Results at stand scale showed that (1) LUE increased with stand age for all genotypes, from 0.15 at age 1 yr to 1.70 g MJ−1 at age 6 yrs on average; (2) light absorption was a major limiting factor over the first year of growth (R2 between APAR and stand biomass ranging from 0.5 to 0.95), explaining most of the inter- and intra-genotype growth variability; (3) at rotation scale, the variability of final stemwood biomass among genotypes was in general attributable to other factors than average APAR; (4) differences in stemwood productions among genotypes remained large throughout the rotation; (5) LUEs over the second half of the rotation, rather than initial growth or APAR, was the major driver of stemwood biomass at the time of harvest.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Forest Ecology and Management, v. 449.