Scaling investigation of Fermi acceleration on a dissipative bouncer model
Nenhuma Miniatura disponível
Data
2008-11-11
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
The phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008.