Trajectory tracking of a wheeled mobile robot with uncertainties and disturbances: Proposed adaptive neural control

dc.contributor.authorMartins, Nardênio Almeida
dc.contributor.authorDe Alencar, Maycol
dc.contributor.authorLombardi, Warody Claudinei
dc.contributor.authorBertol, Douglas Wildgrube
dc.contributor.authorDe Pieri, Edson Roberto
dc.contributor.authorFilho, Humberto Ferasoli [UNESP]
dc.contributor.institutionUniversidade Estadual de Maringá (UEM)
dc.contributor.institutionINSA - Institut National des Sciences Appliquées
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:03:54Z
dc.date.available2022-04-29T08:03:54Z
dc.date.issued2015-01-01
dc.description.abstractThis paper analyses a trajectory tracking control problem for a wheeled mobile robot, using integration of a kinematic neural controller (KNC) and a torque neural controller (TNC), in which both the kinematic and dynamic models contain uncertainties and disturbances. The proposed adaptive neural controller (PANC) is composed of the KNC and the TNC and is designed with use of a modeling technique of Gaussian radial basis function neural networks (RBFNNs). The KNC is a variable structure controller, based on the sliding mode theory and is applied to compensate for the disturbances of the wheeled mobile robot kinematics. The TNC is an inertia-based controller composed of a dynamic neural controller (DNC) and a robust neural compensator (RNC) applied to compensate for the wheeled mobile robot dynamics, bounded unknown disturbances, and neural network modeling errors. To minimize the problems found in practical implementations of the classical variable structure controllers (VSC) and sliding mode controllers (SMC), and to eliminate the chattering phenomenon, the nonlinear and continuous KNC and RNC of the TNC are applied in lieu of the discontinuous components of the control signals that are present in classical forms. Additionally, the PANC neither requires the knowledge of the wheeled mobile robot kinematics and dynamics nor the timeconsuming training process. Stability analysis, convergence of the tracking errors to zero, and the learning algorithms for the weights are guaranteed based on the Lyapunov method. Simulation results are provided to demonstrate the effectiveness of the proposed approach.en
dc.description.affiliationUniversidade Estadual de Maringá Departamento de Informática, Avenida Colombo, 5790
dc.description.affiliationLyon Université INSA - Institut National des Sciences Appliquées, 20, avenue Albert Einstein
dc.description.affiliationUniversidade Federal de Santa Catarina Departamento de Automãçao e Sistemas Programa de Pós-Graduãçao em Engenharia de Automãçao e Sistemas, Caixa Postal 476
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho Faculdade de Ciências Departamento de Computãçao, Avenida Luiz Edmundo Carrijo Coube, Caixa Postal 473
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho Faculdade de Ciências Departamento de Computãçao, Avenida Luiz Edmundo Carrijo Coube, Caixa Postal 473
dc.format.extent47-98
dc.identifier.citationControl and Cybernetics, v. 44, n. 1, p. 47-98, 2015.
dc.identifier.issn0324-8569
dc.identifier.scopus2-s2.0-85018222508
dc.identifier.urihttp://hdl.handle.net/11449/228309
dc.language.isoeng
dc.relation.ispartofControl and Cybernetics
dc.sourceScopus
dc.subjectDynamic control
dc.subjectKinematic control
dc.subjectLyapunov theory
dc.subjectNeural networks
dc.subjectSliding mode theory
dc.subjectTrajectory tracking
dc.subjectVariable structure control
dc.subjectWheeled mobile robot
dc.titleTrajectory tracking of a wheeled mobile robot with uncertainties and disturbances: Proposed adaptive neural controlen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos