COVID-19 Patterns in Araraquara, Brazil: A Multimodal Analysis

dc.contributor.authorAragão, Dunfrey Pires
dc.contributor.authorJunior, Andouglas Gonçalves da Silva
dc.contributor.authorMondini, Adriano [UNESP]
dc.contributor.authorDistante, Cosimo
dc.contributor.authorGonçalves, Luiz Marcos Garcia
dc.contributor.institutionUniversidade Federal do Rio Grande do Norte
dc.contributor.institutionInstitute of Applied Sciences and Intelligent Systems-CNR
dc.contributor.institutionInstituto Federal do Rio Grande do Norte
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:08:09Z
dc.date.available2023-07-29T13:08:09Z
dc.date.issued2023-03-01
dc.description.abstractThe epidemiology of COVID-19 presented major shifts during the pandemic period. Factors such as the most common symptoms and severity of infection, the circulation of different variants, the preparedness of health services, and control efforts based on pharmaceutical and non-pharmaceutical interventions played important roles in the disease incidence. The constant evolution and changes require the continuous mapping and assessing of epidemiological features based on time-series forecasting. Nonetheless, it is necessary to identify the events, patterns, and actions that were potential factors that affected daily COVID-19 cases. In this work, we analyzed several databases, including information on social mobility, epidemiological reports, and mass population testing, to identify patterns of reported cases and events that may indicate changes in COVID-19 behavior in the city of Araraquara, Brazil. In our analysis, we used a mathematical approach with the fast Fourier transform (FFT) to map possible events and machine learning model approaches such as Seasonal Auto-regressive Integrated Moving Average (ARIMA) and neural networks (NNs) for data interpretation and temporal prospecting. Our results showed a root-mean-square error (RMSE) of about 5 (more precisely, a 4.55 error over 71 cases for 20 March 2021 and a 5.57 error over 106 cases for 3 June 2021). These results demonstrated that FFT is a useful tool for supporting the development of the best prevention and control measures for COVID-19.en
dc.description.affiliationPós-Graduação em Engenharia Elétrica e de Computação Universidade Federal do Rio Grande do Norte, Av. Salgado Filho, 3000, Lagoa Nova
dc.description.affiliationInstitute of Applied Sciences and Intelligent Systems-CNR, Via Monteroni sn
dc.description.affiliationInstituto Federal do Rio Grande do Norte, Rua Dr. Mauro Duarte, S/N, José Clóvis
dc.description.affiliationFaculdade de Ciências Farmacêuticas Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rodovia Araraquara-Jaú, Km 1, Campus Ville
dc.description.affiliationUnespFaculdade de Ciências Farmacêuticas Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rodovia Araraquara-Jaú, Km 1, Campus Ville
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCAPES: 88881.506890/2020-01
dc.identifierhttp://dx.doi.org/10.3390/ijerph20064740
dc.identifier.citationInternational Journal of Environmental Research and Public Health, v. 20, n. 6, 2023.
dc.identifier.doi10.3390/ijerph20064740
dc.identifier.issn1660-4601
dc.identifier.issn1661-7827
dc.identifier.scopus2-s2.0-85152443642
dc.identifier.urihttp://hdl.handle.net/11449/247165
dc.language.isoeng
dc.relation.ispartofInternational Journal of Environmental Research and Public Health
dc.sourceScopus
dc.subjectCOVID-19 dynamics
dc.subjectlockdown
dc.subjectsocial distance
dc.subjecttime-series forecast
dc.titleCOVID-19 Patterns in Araraquara, Brazil: A Multimodal Analysisen
dc.typeArtigo
unesp.author.orcid0000-0002-2401-6985[1]
unesp.author.orcid0000-0003-0579-8464[2]
unesp.author.orcid0000-0002-5557-9721[3]
unesp.author.orcid0000-0002-1073-2390[4]
unesp.author.orcid0000-0002-7735-5630[5]

Arquivos

Coleções