Publicação: Meta-heuristic multi- and many-objective optimization techniques for solution of machine learning problems
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Wiley-Blackwell
Tipo
Resenha
Direito de acesso
Acesso restrito
Resumo
Recently, multi- and many-objective meta-heuristic algorithms have received considerable attention due to their capability to solve optimization problems that require more than one fitness function. This paper presents a comprehensive study of these techniques applied in the context of machine learning problems. Three different topics are reviewed in this work: (a) feature extraction and selection, (b) hyper-parameter optimization and model selection in the context of supervised learning, and (c) clustering or unsupervised learning. The survey also highlights future research towards related areas.
Descrição
Palavras-chave
machine learning, meta-heuristic algorithms, multi-objective optimization
Idioma
Inglês
Como citar
Expert Systems. Hoboken: Wiley, v. 34, n. 6, 12 p., 2017.