Logotipo do repositório
 

Publicação:
Meta-heuristic multi- and many-objective optimization techniques for solution of machine learning problems

dc.contributor.authorRodrigues, Douglas
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorAdeli, Hojjat
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionOhio State Univ
dc.date.accessioned2018-11-26T17:42:32Z
dc.date.available2018-11-26T17:42:32Z
dc.date.issued2017-12-01
dc.description.abstractRecently, multi- and many-objective meta-heuristic algorithms have received considerable attention due to their capability to solve optimization problems that require more than one fitness function. This paper presents a comprehensive study of these techniques applied in the context of machine learning problems. Three different topics are reviewed in this work: (a) feature extraction and selection, (b) hyper-parameter optimization and model selection in the context of supervised learning, and (c) clustering or unsupervised learning. The survey also highlights future research towards related areas.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationOhio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
dc.description.affiliationOhio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
dc.description.affiliationOhio State Univ, Dept Neurosci, Columbus, OH 43210 USA
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 306166/1014-3
dc.description.sponsorshipIdFAPESP: 2015/50319-9
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.format.extent12
dc.identifierhttp://dx.doi.org/10.1111/exsy.12255
dc.identifier.citationExpert Systems. Hoboken: Wiley, v. 34, n. 6, 12 p., 2017.
dc.identifier.doi10.1111/exsy.12255
dc.identifier.issn0266-4720
dc.identifier.urihttp://hdl.handle.net/11449/163562
dc.identifier.wosWOS:000417106900010
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofExpert Systems
dc.relation.ispartofsjr0,429
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectmachine learning
dc.subjectmeta-heuristic algorithms
dc.subjectmulti-objective optimization
dc.titleMeta-heuristic multi- and many-objective optimization techniques for solution of machine learning problemsen
dc.typeResenha
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderWiley-Blackwell
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos