Publicação: Meta-heuristic multi- and many-objective optimization techniques for solution of machine learning problems
dc.contributor.author | Rodrigues, Douglas | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Adeli, Hojjat | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Ohio State Univ | |
dc.date.accessioned | 2018-11-26T17:42:32Z | |
dc.date.available | 2018-11-26T17:42:32Z | |
dc.date.issued | 2017-12-01 | |
dc.description.abstract | Recently, multi- and many-objective meta-heuristic algorithms have received considerable attention due to their capability to solve optimization problems that require more than one fitness function. This paper presents a comprehensive study of these techniques applied in the context of machine learning problems. Three different topics are reviewed in this work: (a) feature extraction and selection, (b) hyper-parameter optimization and model selection in the context of supervised learning, and (c) clustering or unsupervised learning. The survey also highlights future research towards related areas. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.affiliation | Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA | |
dc.description.affiliation | Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA | |
dc.description.affiliation | Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 306166/1014-3 | |
dc.description.sponsorshipId | FAPESP: 2015/50319-9 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.format.extent | 12 | |
dc.identifier | http://dx.doi.org/10.1111/exsy.12255 | |
dc.identifier.citation | Expert Systems. Hoboken: Wiley, v. 34, n. 6, 12 p., 2017. | |
dc.identifier.doi | 10.1111/exsy.12255 | |
dc.identifier.issn | 0266-4720 | |
dc.identifier.uri | http://hdl.handle.net/11449/163562 | |
dc.identifier.wos | WOS:000417106900010 | |
dc.language.iso | eng | |
dc.publisher | Wiley-Blackwell | |
dc.relation.ispartof | Expert Systems | |
dc.relation.ispartofsjr | 0,429 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | machine learning | |
dc.subject | meta-heuristic algorithms | |
dc.subject | multi-objective optimization | |
dc.title | Meta-heuristic multi- and many-objective optimization techniques for solution of machine learning problems | en |
dc.type | Resenha | |
dcterms.license | http://olabout.wiley.com/WileyCDA/Section/id-406071.html | |
dcterms.rightsHolder | Wiley-Blackwell | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |