Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

β-Tricalcium phosphate incorporated natural rubber latex membranes for calvarial bone defects: Physicochemical, in vitro and in vivo assessment

Resumo

Natural rubber latex membrane (NRL) is a biocompatible macromolecule that stimulates angiogenesis and promotes bone repair. Similarly, β-tricalcium phosphate (β-TCP) is an osteoconductive and osteoinductive bioceramic widely used as a bone substitute. Here, we investigated the combined use of these biomaterials in the guided bone regeneration process for calvarial defects in rats. Physicochemical characterization was performed to evaluate the interaction between β-TCP and NRL. Membrane toxicity was assessed using MC3T3 osteoblasts culture and in vivo assays with Caenorhabditis elegans. Lastly, NRL membranes, NRL incorporated with β-TCP membranes (NRL-β-TCP), and a periosteum-only (control group) were tested on rodents. MC3T3 cells adhered to membranes, preserving their morphology and intercellular connections. NRL-β-TCP membranes demonstrated no toxicity in larvae, which maintained their sinusoidal wave shape. Tests results on rodents revealed statistical difference between the groups at 60 days post-operation. NRL-β-TCP (56.1 ± 14.0 %) had an average 1.48-fold higher than the control group (38.0 ± 9.1 %), with tissue production and bone remodeling. Our qualitative histological analyses revealed that membranes significantly accelerated bone formation without any signs of inflammatory reactions. We conclude that NRL-β-TCP has potential to be used for flat bone regeneration, with osteoconductive properties, being a cheap, biocompatible, and effective occlusive barrier.

Descrição

Palavras-chave

Bioceramic, Caenorhabditis elegans, Guided bone regeneration, Natural rubber, Occlusive barrier

Idioma

Inglês

Citação

International Journal of Biological Macromolecules, v. 282.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências Farmacêuticas
FCF
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso