Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A neural network approach employed to classify soybean plants using multi-sensor images

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Counting soybean plants is a crucial strategy for assessing sowing quality and supporting high production. Despite its importance, the laborious nature of traditional assessment methods makes them unreliable and not scalable. Additionally, innovative image-based solutions have demonstrated limitations in detecting dense crops such as soybeans. Therefore, in this study, we developed neural network models to analyze a set of RGB and multispectral images and perform plant classification in a comprehensive dataset, which included data collected at three vegetative stages of soybean (VC, V1, and V2). Our results demonstrated high accuracy in classifying plants using either RGB (98%) or multispectral images (92%). A significant strength of this study is the ability to classify highly dense plants, without a trend for misclassification. Clearly, our findings provide stakeholders with a timely and effective approach to counting soybean plants, reducing labor and time, while increasing reliability.

Descrição

Palavras-chave

Dense crop, Multilayer perceptron, Multispectral images, Plant classification, Stand count

Idioma

Inglês

Citação

Precision Agriculture, v. 26, n. 2, 2025.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso