Atenção!


Informamos que o Repositório Institucional passará por atualização no dia 15/01/2026 e ficará fora do ar entre 10:00 e 14:00 horas.

Pedimos a sua compreensão

Logo do repositório

A neural network approach employed to classify soybean plants using multi-sensor images

dc.contributor.authorde Souza, Flávia Luize Pereira [UNESP]
dc.contributor.authorShiratsuchi, Luciano Shozo
dc.contributor.authorDias, Maurício Acconcia
dc.contributor.authorBarbosa Júnior, Marcelo Rodrigues
dc.contributor.authorSetiyono, Tri Deri
dc.contributor.authorCampos, Sérgio [UNESP]
dc.contributor.authorTao, Haiying
dc.contributor.institutionUniversity of Connecticut
dc.contributor.institutionLouisiana State University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPrecision AgX
dc.contributor.institutionUniversity Center of Herminio Ometto Foundation
dc.contributor.institutionUniversity of Georgia
dc.date.accessioned2025-04-29T20:00:45Z
dc.date.issued2025-04-01
dc.description.abstractCounting soybean plants is a crucial strategy for assessing sowing quality and supporting high production. Despite its importance, the laborious nature of traditional assessment methods makes them unreliable and not scalable. Additionally, innovative image-based solutions have demonstrated limitations in detecting dense crops such as soybeans. Therefore, in this study, we developed neural network models to analyze a set of RGB and multispectral images and perform plant classification in a comprehensive dataset, which included data collected at three vegetative stages of soybean (VC, V1, and V2). Our results demonstrated high accuracy in classifying plants using either RGB (98%) or multispectral images (92%). A significant strength of this study is the ability to classify highly dense plants, without a trend for misclassification. Clearly, our findings provide stakeholders with a timely and effective approach to counting soybean plants, reducing labor and time, while increasing reliability.en
dc.description.affiliationDepartment of Plant Science and Landscape Architecture University of Connecticut, Storrs
dc.description.affiliationSchool of Plant Environmental and Soil Sciences Louisiana State University
dc.description.affiliationDepartment of Rural Engineering São Paulo State University, SP
dc.description.affiliationPrecision AgX, PO box 9617
dc.description.affiliationUniversity Center of Herminio Ometto Foundation, SP
dc.description.affiliationDepartment of Horticulture University of Georgia
dc.description.affiliationUnespDepartment of Rural Engineering São Paulo State University, SP
dc.identifierhttp://dx.doi.org/10.1007/s11119-025-10229-1
dc.identifier.citationPrecision Agriculture, v. 26, n. 2, 2025.
dc.identifier.doi10.1007/s11119-025-10229-1
dc.identifier.issn1573-1618
dc.identifier.issn1385-2256
dc.identifier.scopus2-s2.0-85218445123
dc.identifier.urihttps://hdl.handle.net/11449/304758
dc.language.isoeng
dc.relation.ispartofPrecision Agriculture
dc.sourceScopus
dc.subjectDense crop
dc.subjectMultilayer perceptron
dc.subjectMultispectral images
dc.subjectPlant classification
dc.subjectStand count
dc.titleA neural network approach employed to classify soybean plants using multi-sensor imagesen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-8015-2316[1]

Arquivos

Coleções