Logotipo do repositório
 

Publicação:
Gr�neisen parameter for gases and superfluid helium

dc.contributor.authorDe Souza, Mariano [UNESP]
dc.contributor.authorMenegasso, Paulo [UNESP]
dc.contributor.authorPaupitz, Ricardo [UNESP]
dc.contributor.authorSeridonio, Antonio [UNESP]
dc.contributor.authorLagos, Roberto E. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:05:31Z
dc.date.available2018-12-11T17:05:31Z
dc.date.issued2016-08-05
dc.description.abstractThe Gr�neisen ratio (Γ), i.e. the ratio of the thermal expansivity to the specific heat at constant pressure, quantifies the degree of anharmonicity of the potential governing the physical properties of a system. While Γ has been intensively explored in solid state physics, very little is known about its behavior for gases. This is most likely due to the difficulties posed in carrying out both thermal expansion and specific heat measurements in gases with high accuracy as a function of pressure and temperature. Furthermore, to the best of our knowledge a comprehensive discussion about the peculiarities of the Gr�neisen ratio is still lacking in the literature. Here we report on a detailed and comprehensive overview of the Gr�neisen ratio. Particular emphasis is placed on the analysis of Γ for gases. The main findings of this work are: (i) for the van der Waals gas Γ depends only on the co-volume b due to interaction effects, it is smaller than that for the ideal gas (Γ = 2/3) and diverges upon approaching the critical volume; (ii) for the Bose-Einstein condensation of an ideal boson gas, assuming the transition as first-order, Γ diverges upon approaching a critical volume, similarly to the van der Waals gas; (iii) for 4He at the superfluid transition Γ shows a singular behavior. Our results reveal that Γ can be used as an appropriate experimental tool to explore pressure-induced critical points.en
dc.description.affiliationDepartamento de F�sica IGCE UNESP - Universidade Estadual Paulista
dc.description.affiliationUnespDepartamento de F�sica IGCE UNESP - Universidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.1088/0143-0807/37/5/055105
dc.identifier.citationEuropean Journal of Physics, v. 37, n. 5, 2016.
dc.identifier.doi10.1088/0143-0807/37/5/055105
dc.identifier.file2-s2.0-84985961696.pdf
dc.identifier.issn1361-6404
dc.identifier.issn0143-0807
dc.identifier.scopus2-s2.0-84985961696
dc.identifier.urihttp://hdl.handle.net/11449/173447
dc.language.isoeng
dc.relation.ispartofEuropean Journal of Physics
dc.relation.ispartofsjr0,337
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectGr�neisen parameter
dc.subjectphase transitions
dc.subjectspecific heat
dc.subjectthermal expansion
dc.titleGr�neisen parameter for gases and superfluid heliumen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes4319898277403494[4]
unesp.author.orcid0000-0001-5612-9485[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentFísica - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84985961696.pdf
Tamanho:
1.82 MB
Formato:
Adobe Portable Document Format
Descrição: