Publication: Optical excitation of charge carriers from intra-bandgap states in Ce-doped SnO2 thin films
Loading...
Date
Advisor
Coadvisor
Graduate program
Undergraduate course
Journal Title
Journal ISSN
Volume Title
Publisher
Type
Work presented at event
Access right
Acesso aberto

Abstract
Optical excitation of Ce3+-doped SnO2 thin films, obtained by the sol-gel-dip-coating technique, is carried out and the effects on electrical transport are evaluated. Samples are doped with O. lat% of Ce, just above the saturation limit. The excitation is done with an intensity-controlled halogen-tungsten lamp through an interference filter, yielding an excitation wavelength of 513nm, 9 nm wide (width at half intensity peak). Irradiation at low temperature (25K) yields a conductivity increase much lower than above bandgap light. Such a behavior assures the ionization of intra-bandgap defect levels, since the filter does not allow excitation of electron-hole pairs, what would happen only in the UV range (below about 350nm). The decay of intra-bandgap excited levels in the range 250-320 K is recorded, leading to a temperature dependent behavior related to a thermally excited capture cross section for the dominating defect level. © 2008 American Institute of Physics.
Description
Keywords
Cerium, Electroluminescent devices, Thin films, Tin dioxide
Language
English
Citation
AIP Conference Proceedings, v. 992, p. 1283-1288.