EXplainable Artificial Intelligence in sentiment analysis of posts about Covid-19 vaccination on Twitter
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Considering the impact of the use of Artificial Intelligence (AI) in the most diverse branches of society and the use of eXplicable Artificial Intelligence (XAI) to improve the interpretability of these intelligent models, this paper aims to analyze some existing XAI methods to verify their effectiveness. To this end, experiments were conducted with LIME, SHAP, and Eli5 solutions in a scenario of sentiment classifications in Twitter posts about the Covid-19 vaccination process in Brazil. Thus, it is observed that the tools provide relevant information about the aspects that interfere in the classification of tweets as favorable or not favorable to vaccination, which allows concluding that the methods bring the necessary transparency to confirm the AI decisions regarding the sentiments related to the vaccination process in Brazil.
Descrição
Palavras-chave
COVID-19, explainability, explicable artificial intelligence, sentiment analysis
Idioma
Português
Citação
ACM International Conference Proceeding Series, p. 65-72.




