Logo do repositório

EXplainable Artificial Intelligence in sentiment analysis of posts about Covid-19 vaccination on Twitter

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Considering the impact of the use of Artificial Intelligence (AI) in the most diverse branches of society and the use of eXplicable Artificial Intelligence (XAI) to improve the interpretability of these intelligent models, this paper aims to analyze some existing XAI methods to verify their effectiveness. To this end, experiments were conducted with LIME, SHAP, and Eli5 solutions in a scenario of sentiment classifications in Twitter posts about the Covid-19 vaccination process in Brazil. Thus, it is observed that the tools provide relevant information about the aspects that interfere in the classification of tweets as favorable or not favorable to vaccination, which allows concluding that the methods bring the necessary transparency to confirm the AI decisions regarding the sentiments related to the vaccination process in Brazil.

Descrição

Palavras-chave

COVID-19, explainability, explicable artificial intelligence, sentiment analysis

Idioma

Português

Citação

ACM International Conference Proceeding Series, p. 65-72.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso