Logo do repositório

EXplainable Artificial Intelligence in sentiment analysis of posts about Covid-19 vaccination on Twitter

dc.contributor.authorFeitosa, Juliana Da Costa [UNESP]
dc.contributor.authorDe Camargo, Luiz Felipe [UNESP]
dc.contributor.authorBonatti, Eloisa [UNESP]
dc.contributor.authorSimioni, Giovanna [UNESP]
dc.contributor.authorBrega, José Remo Ferreira [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:16:02Z
dc.date.issued2023-10-23
dc.description.abstractConsidering the impact of the use of Artificial Intelligence (AI) in the most diverse branches of society and the use of eXplicable Artificial Intelligence (XAI) to improve the interpretability of these intelligent models, this paper aims to analyze some existing XAI methods to verify their effectiveness. To this end, experiments were conducted with LIME, SHAP, and Eli5 solutions in a scenario of sentiment classifications in Twitter posts about the Covid-19 vaccination process in Brazil. Thus, it is observed that the tools provide relevant information about the aspects that interfere in the classification of tweets as favorable or not favorable to vaccination, which allows concluding that the methods bring the necessary transparency to confirm the AI decisions regarding the sentiments related to the vaccination process in Brazil.en
dc.description.affiliationSao Paulo State University Department of Computing
dc.description.affiliationUnespSao Paulo State University Department of Computing
dc.format.extent65-72
dc.identifierhttp://dx.doi.org/10.1145/3617023.3617033
dc.identifier.citationACM International Conference Proceeding Series, p. 65-72.
dc.identifier.doi10.1145/3617023.3617033
dc.identifier.scopus2-s2.0-85175690907
dc.identifier.urihttps://hdl.handle.net/11449/309605
dc.language.isopor
dc.relation.ispartofACM International Conference Proceeding Series
dc.sourceScopus
dc.subjectCOVID-19
dc.subjectexplainability
dc.subjectexplicable artificial intelligence
dc.subjectsentiment analysis
dc.titleEXplainable Artificial Intelligence in sentiment analysis of posts about Covid-19 vaccination on Twitteren
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0009-0005-6935-1022[1]
unesp.author.orcid0000-0003-4859-0364[2]
unesp.author.orcid0009-0003-8248-1660[3]
unesp.author.orcid0009-0000-4310-4852[4]
unesp.author.orcid0000-0002-2275-4722[5]

Arquivos

Coleções