Computer-assisted Parkinson's disease diagnosis using fuzzy optimum- path forest and Restricted Boltzmann Machines
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
Parkinson's disease (PD) is a progressive neurodegenerative illness associated with motor skill disorders, affecting thousands of people, mainly elderly, worldwide. Since its symptoms are not clear and commonly confused with other diseases, providing early diagnosis is a challenging task for traditional methods. In this context, computer-aided assistance is an alternative method for a fast and automatic diagnosis, accelerating the treatment and alleviating an excessive effort from professionals. Moreover, the most recent studies proposing a solution to this problem lack in computational efficiency, prediction power, reliability among other factors. Therefore, this work proposes a Fuzzy Optimum Path Forest for automated PD identification, which is based on fuzzy logic and graph-based framework theory. Experiments consider a dataset composed of features extracted from hand-drawn images using Restricted Boltzmann Machines, and results are compared with baseline models such as Support Vector Machines, KNN, and the standard OPF classifier. Results show that the proposed model outperforms the baselines in most cases, suggesting the Fuzzy OPF as a viable alternative to deal with PD detection problems.
Descrição
Palavras-chave
Parkinson's disease, Fuzzy optimum-path forest, Machine learning
Idioma
Inglês
Citação
Computers In Biology And Medicine. Oxford: Pergamon-elsevier Science Ltd, v. 131, 11 p., 2021.


