Logo do repositório

Computer-assisted Parkinson's disease diagnosis using fuzzy optimum- path forest and Restricted Boltzmann Machines

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Resumo

Parkinson's disease (PD) is a progressive neurodegenerative illness associated with motor skill disorders, affecting thousands of people, mainly elderly, worldwide. Since its symptoms are not clear and commonly confused with other diseases, providing early diagnosis is a challenging task for traditional methods. In this context, computer-aided assistance is an alternative method for a fast and automatic diagnosis, accelerating the treatment and alleviating an excessive effort from professionals. Moreover, the most recent studies proposing a solution to this problem lack in computational efficiency, prediction power, reliability among other factors. Therefore, this work proposes a Fuzzy Optimum Path Forest for automated PD identification, which is based on fuzzy logic and graph-based framework theory. Experiments consider a dataset composed of features extracted from hand-drawn images using Restricted Boltzmann Machines, and results are compared with baseline models such as Support Vector Machines, KNN, and the standard OPF classifier. Results show that the proposed model outperforms the baselines in most cases, suggesting the Fuzzy OPF as a viable alternative to deal with PD detection problems.

Descrição

Palavras-chave

Parkinson's disease, Fuzzy optimum-path forest, Machine learning

Idioma

Inglês

Citação

Computers In Biology And Medicine. Oxford: Pergamon-elsevier Science Ltd, v. 131, 11 p., 2021.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação