Logo do repositório

Computer-assisted Parkinson's disease diagnosis using fuzzy optimum- path forest and Restricted Boltzmann Machines

dc.contributor.authorSouza, Renato W. R. de
dc.contributor.authorSilva, Daniel S.
dc.contributor.authorPassos, Leandro A. [UNESP]
dc.contributor.authorRoder, Mateus [UNESP]
dc.contributor.authorSantana, Marcos C. [UNESP]
dc.contributor.authorPinheiro, Placido R.
dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.institutionUniv Fortaleza
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Ceara
dc.date.accessioned2021-06-25T12:41:59Z
dc.date.available2021-06-25T12:41:59Z
dc.date.issued2021-04-01
dc.description.abstractParkinson's disease (PD) is a progressive neurodegenerative illness associated with motor skill disorders, affecting thousands of people, mainly elderly, worldwide. Since its symptoms are not clear and commonly confused with other diseases, providing early diagnosis is a challenging task for traditional methods. In this context, computer-aided assistance is an alternative method for a fast and automatic diagnosis, accelerating the treatment and alleviating an excessive effort from professionals. Moreover, the most recent studies proposing a solution to this problem lack in computational efficiency, prediction power, reliability among other factors. Therefore, this work proposes a Fuzzy Optimum Path Forest for automated PD identification, which is based on fuzzy logic and graph-based framework theory. Experiments consider a dataset composed of features extracted from hand-drawn images using Restricted Boltzmann Machines, and results are compared with baseline models such as Support Vector Machines, KNN, and the standard OPF classifier. Results show that the proposed model outperforms the baselines in most cases, suggesting the Fuzzy OPF as a viable alternative to deal with PD detection problems.en
dc.description.affiliationUniv Fortaleza, Grad Program Appl Informat, Ave Washington Soares 1321, BR-60811905 Fortaleza, Ceara, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUniv Fed Ceara, Grad Program Teleinformat Engn, Fortaleza, Ceara, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 304315/2017-6
dc.description.sponsorshipIdCNPq: 430274/2018-1
dc.description.sponsorshipIdFAPESP: 2020/12101-0
dc.description.sponsorshipIdFAPESP: 2019/078251
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.1016/j.compbiomed.2021.104260
dc.identifier.citationComputers In Biology And Medicine. Oxford: Pergamon-elsevier Science Ltd, v. 131, 11 p., 2021.
dc.identifier.doi10.1016/j.compbiomed.2021.104260
dc.identifier.issn0010-4825
dc.identifier.urihttp://hdl.handle.net/11449/210175
dc.identifier.wosWOS:000634814300001
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputers In Biology And Medicine
dc.sourceWeb of Science
dc.subjectParkinson's disease
dc.subjectFuzzy optimum-path forest
dc.subjectMachine learning
dc.titleComputer-assisted Parkinson's disease diagnosis using fuzzy optimum- path forest and Restricted Boltzmann Machinesen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-3112-5290[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos