Logotipo do repositório
 

Publicação:
Particle-based fast jet simulation at the LHC with variational autoencoders

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

We study how to use deep variational autoencoders (VAEs) for a fast simulation of jets of particles at the Large Hadron Collider. We represent jets as a list of constituents, characterized by their momenta. Starting from a simulation of the jet before detector effects, we train a deep VAE to return the corresponding list of constituents after detection. Doing so, we bypass both the time-consuming detector simulation and the collision reconstruction steps of a traditional processing chain, speeding up significantly the events generation workflow. Through model optimization and hyperparameter tuning, we achieve state-of-the-art precision on the jet four-momentum, while providing an accurate description of the constituents momenta, and an inference time comparable to that of a rule-based fast simulation.

Descrição

Palavras-chave

generative models, particle physics, sparse data simulation

Idioma

Inglês

Como citar

Machine Learning: Science and Technology, v. 3, n. 3, 2022.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação