Logo do repositório
 

Particle-based fast jet simulation at the LHC with variational autoencoders

dc.contributor.authorTouranakou, Mary
dc.contributor.authorChernyavskaya, Nadezda
dc.contributor.authorDuarte, Javier
dc.contributor.authorGunopulos, Dimitrios
dc.contributor.authorKansal, Raghav
dc.contributor.authorOrzari, Breno [UNESP]
dc.contributor.authorPierini, Maurizio
dc.contributor.authorTomei, Thiago [UNESP]
dc.contributor.authorVlimant, Jean-Roch
dc.contributor.institutionEuropean Organization for Nuclear Research (CERN)
dc.contributor.institutionNational and Kapodistrian University of Athens
dc.contributor.institutionUniversity of California San Diego
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCalifornia Institute of Technology
dc.date.accessioned2023-03-01T20:23:15Z
dc.date.available2023-03-01T20:23:15Z
dc.date.issued2022-09-01
dc.description.abstractWe study how to use deep variational autoencoders (VAEs) for a fast simulation of jets of particles at the Large Hadron Collider. We represent jets as a list of constituents, characterized by their momenta. Starting from a simulation of the jet before detector effects, we train a deep VAE to return the corresponding list of constituents after detection. Doing so, we bypass both the time-consuming detector simulation and the collision reconstruction steps of a traditional processing chain, speeding up significantly the events generation workflow. Through model optimization and hyperparameter tuning, we achieve state-of-the-art precision on the jet four-momentum, while providing an accurate description of the constituents momenta, and an inference time comparable to that of a rule-based fast simulation.en
dc.description.affiliationEuropean Organization for Nuclear Research (CERN)
dc.description.affiliationDepartment of Informatics and Telecommunications National and Kapodistrian University of Athens
dc.description.affiliationUniversity of California San Diego, La Jolla
dc.description.affiliationUniversidade Estadual Paulista, SP
dc.description.affiliationCalifornia Institute of Technology
dc.description.affiliationUnespUniversidade Estadual Paulista, SP
dc.identifierhttp://dx.doi.org/10.1088/2632-2153/ac7c56
dc.identifier.citationMachine Learning: Science and Technology, v. 3, n. 3, 2022.
dc.identifier.doi10.1088/2632-2153/ac7c56
dc.identifier.issn2632-2153
dc.identifier.scopus2-s2.0-85135112343
dc.identifier.urihttp://hdl.handle.net/11449/240570
dc.language.isoeng
dc.relation.ispartofMachine Learning: Science and Technology
dc.sourceScopus
dc.subjectgenerative models
dc.subjectparticle physics
dc.subjectsparse data simulation
dc.titleParticle-based fast jet simulation at the LHC with variational autoencodersen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-3682-3258 0000-0002-3682-3258[1]
unesp.author.orcid0000-0002-2264-2229[2]
unesp.author.orcid0000-0002-5076-7096[3]
unesp.author.orcid0000-0001-6339-1879[4]
unesp.author.orcid0000-0003-2445-1060[5]
unesp.author.orcid0000-0003-4232-4743[6]
unesp.author.orcid0000-0003-1939-4268[7]
unesp.author.orcid0000-0002-1809-5226[8]
unesp.author.orcid0000-0002-9705-101X[9]

Arquivos

Coleções