Particle-based fast jet simulation at the LHC with variational autoencoders
dc.contributor.author | Touranakou, Mary | |
dc.contributor.author | Chernyavskaya, Nadezda | |
dc.contributor.author | Duarte, Javier | |
dc.contributor.author | Gunopulos, Dimitrios | |
dc.contributor.author | Kansal, Raghav | |
dc.contributor.author | Orzari, Breno [UNESP] | |
dc.contributor.author | Pierini, Maurizio | |
dc.contributor.author | Tomei, Thiago [UNESP] | |
dc.contributor.author | Vlimant, Jean-Roch | |
dc.contributor.institution | European Organization for Nuclear Research (CERN) | |
dc.contributor.institution | National and Kapodistrian University of Athens | |
dc.contributor.institution | University of California San Diego | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | California Institute of Technology | |
dc.date.accessioned | 2023-03-01T20:23:15Z | |
dc.date.available | 2023-03-01T20:23:15Z | |
dc.date.issued | 2022-09-01 | |
dc.description.abstract | We study how to use deep variational autoencoders (VAEs) for a fast simulation of jets of particles at the Large Hadron Collider. We represent jets as a list of constituents, characterized by their momenta. Starting from a simulation of the jet before detector effects, we train a deep VAE to return the corresponding list of constituents after detection. Doing so, we bypass both the time-consuming detector simulation and the collision reconstruction steps of a traditional processing chain, speeding up significantly the events generation workflow. Through model optimization and hyperparameter tuning, we achieve state-of-the-art precision on the jet four-momentum, while providing an accurate description of the constituents momenta, and an inference time comparable to that of a rule-based fast simulation. | en |
dc.description.affiliation | European Organization for Nuclear Research (CERN) | |
dc.description.affiliation | Department of Informatics and Telecommunications National and Kapodistrian University of Athens | |
dc.description.affiliation | University of California San Diego, La Jolla | |
dc.description.affiliation | Universidade Estadual Paulista, SP | |
dc.description.affiliation | California Institute of Technology | |
dc.description.affiliationUnesp | Universidade Estadual Paulista, SP | |
dc.identifier | http://dx.doi.org/10.1088/2632-2153/ac7c56 | |
dc.identifier.citation | Machine Learning: Science and Technology, v. 3, n. 3, 2022. | |
dc.identifier.doi | 10.1088/2632-2153/ac7c56 | |
dc.identifier.issn | 2632-2153 | |
dc.identifier.scopus | 2-s2.0-85135112343 | |
dc.identifier.uri | http://hdl.handle.net/11449/240570 | |
dc.language.iso | eng | |
dc.relation.ispartof | Machine Learning: Science and Technology | |
dc.source | Scopus | |
dc.subject | generative models | |
dc.subject | particle physics | |
dc.subject | sparse data simulation | |
dc.title | Particle-based fast jet simulation at the LHC with variational autoencoders | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-3682-3258 0000-0002-3682-3258[1] | |
unesp.author.orcid | 0000-0002-2264-2229[2] | |
unesp.author.orcid | 0000-0002-5076-7096[3] | |
unesp.author.orcid | 0000-0001-6339-1879[4] | |
unesp.author.orcid | 0000-0003-2445-1060[5] | |
unesp.author.orcid | 0000-0003-4232-4743[6] | |
unesp.author.orcid | 0000-0003-1939-4268[7] | |
unesp.author.orcid | 0000-0002-1809-5226[8] | |
unesp.author.orcid | 0000-0002-9705-101X[9] |