Logotipo do repositório
 

Publicação:
Pattern Analysis in Drilling Reports using Optimum-Path Forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Well drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in real-time. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports.

Descrição

Palavras-chave

Optimum-Path Forest, Drilling report, Petroleum Engineering

Idioma

Inglês

Como citar

2018 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2018.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação