Logotipo do repositório
 

Publicação:
Pattern Analysis in Drilling Reports using Optimum-Path Forest

dc.contributor.authorSousa, G. J. [UNESP]
dc.contributor.authorPedronette, D. C. G. [UNESP]
dc.contributor.authorBaldassin, A. [UNESP]
dc.contributor.authorPrivatto, P. I. M. [UNESP]
dc.contributor.authorGaseta, M. [UNESP]
dc.contributor.authorGuilherme, I. R. [UNESP]
dc.contributor.authorColombo Cenpes, D.
dc.contributor.authorAfonso, L. C. S. [UNESP]
dc.contributor.authorPapa, J. P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPetroleo Brasileiro SA Petrobras
dc.date.accessioned2021-06-25T11:43:17Z
dc.date.available2021-06-25T11:43:17Z
dc.date.issued2018-01-01
dc.description.abstractWell drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in real-time. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports.en
dc.description.affiliationUNESP Sao Paulo State Univ, Inst Geosc & Exact Sci, Rio Claro, SP, Brazil
dc.description.affiliationPetroleo Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil
dc.description.affiliationUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Inst Geosc & Exact Sci, Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdPetrobras: 2014/00545-0
dc.description.sponsorshipIdFUNDUNESP: 2597.2017
dc.format.extent8
dc.identifier.citation2018 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2018.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/208923
dc.identifier.wosWOS:000585967402022
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2018 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest
dc.subjectDrilling report
dc.subjectPetroleum Engineering
dc.titlePattern Analysis in Drilling Reports using Optimum-Path Foresten
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos