Publicação: Pattern Analysis in Drilling Reports using Optimum-Path Forest
dc.contributor.author | Sousa, G. J. [UNESP] | |
dc.contributor.author | Pedronette, D. C. G. [UNESP] | |
dc.contributor.author | Baldassin, A. [UNESP] | |
dc.contributor.author | Privatto, P. I. M. [UNESP] | |
dc.contributor.author | Gaseta, M. [UNESP] | |
dc.contributor.author | Guilherme, I. R. [UNESP] | |
dc.contributor.author | Colombo Cenpes, D. | |
dc.contributor.author | Afonso, L. C. S. [UNESP] | |
dc.contributor.author | Papa, J. P. [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Petroleo Brasileiro SA Petrobras | |
dc.date.accessioned | 2021-06-25T11:43:17Z | |
dc.date.available | 2021-06-25T11:43:17Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | Well drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in real-time. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports. | en |
dc.description.affiliation | UNESP Sao Paulo State Univ, Inst Geosc & Exact Sci, Rio Claro, SP, Brazil | |
dc.description.affiliation | Petroleo Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil | |
dc.description.affiliation | UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | UNESP Sao Paulo State Univ, Inst Geosc & Exact Sci, Rio Claro, SP, Brazil | |
dc.description.affiliationUnesp | UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Petrobras | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | CNPq: 308194/2017-9 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.description.sponsorshipId | Petrobras: 2014/00545-0 | |
dc.description.sponsorshipId | FUNDUNESP: 2597.2017 | |
dc.format.extent | 8 | |
dc.identifier.citation | 2018 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2018. | |
dc.identifier.issn | 2161-4393 | |
dc.identifier.uri | http://hdl.handle.net/11449/208923 | |
dc.identifier.wos | WOS:000585967402022 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2018 International Joint Conference On Neural Networks (ijcnn) | |
dc.source | Web of Science | |
dc.subject | Optimum-Path Forest | |
dc.subject | Drilling report | |
dc.subject | Petroleum Engineering | |
dc.title | Pattern Analysis in Drilling Reports using Optimum-Path Forest | en |
dc.type | Trabalho apresentado em evento | pt |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |