Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Application of a non-homogeneous Markov chain with seasonal transition probabilities to ozone data

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Taylor & Francis Ltd

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this work, we assume that the sequence recording whether or not an ozone exceedance of an environmental threshold has occurred in a given day is ruled by a non-homogeneous Markov chain of order one. In order to account for the possible presence of cycles in the empirical transition probabilities, a parametric form incorporating seasonal components is considered. Results show that even though some covariates (namely, relative humidity and temperature) are not included explicitly in the model, their influence is captured in the behavior of the transition probabilities. Parameters are estimated using the Bayesian point of view via Markov chain Monte Carlo algorithms. The model is applied to ozone data obtained from the monitoring network of Mexico City, Mexico. An analysis of how the methodology could be used as an aid in the decision-making is also given.

Descrição

Palavras-chave

Seasonal transition probabilities, Bayesian inference, Markov chain Monte Carlo algorithms, air pollution, Mexico City

Idioma

Inglês

Citação

Journal Of Applied Statistics. Abingdon: Taylor & Francis Ltd, v. 46, n. 3, p. 395-415, 2019.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências e Tecnologia
FCT
Campus: Presidente Prudente


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso