Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Application of a non-homogeneous Markov chain with seasonal transition probabilities to ozone data

dc.contributor.authorRodrigues, Eliane R.
dc.contributor.authorTarumoto, Mario H. [UNESP]
dc.contributor.authorTzintzun, Guadalupe
dc.contributor.institutionUniv Nacl Autonoma Mexico
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Nacl Ecol & Cambio Climat
dc.date.accessioned2019-10-04T11:56:28Z
dc.date.available2019-10-04T11:56:28Z
dc.date.issued2019-01-01
dc.description.abstractIn this work, we assume that the sequence recording whether or not an ozone exceedance of an environmental threshold has occurred in a given day is ruled by a non-homogeneous Markov chain of order one. In order to account for the possible presence of cycles in the empirical transition probabilities, a parametric form incorporating seasonal components is considered. Results show that even though some covariates (namely, relative humidity and temperature) are not included explicitly in the model, their influence is captured in the behavior of the transition probabilities. Parameters are estimated using the Bayesian point of view via Markov chain Monte Carlo algorithms. The model is applied to ozone data obtained from the monitoring network of Mexico City, Mexico. An analysis of how the methodology could be used as an aid in the decision-making is also given.en
dc.description.affiliationUniv Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, Pres Prudente, Brazil
dc.description.affiliationInst Nacl Ecol & Cambio Climat, Secretaria Medio Ambiente & Recursos Nat, Mexico City, DF, Mexico
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, Pres Prudente, Brazil
dc.description.sponsorshipDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma deMexico (UNAM), Mexico
dc.description.sponsorshipIdDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma deMexico (UNAM), Mexico: PAPIIT-IN102416
dc.format.extent395-415
dc.identifierhttp://dx.doi.org/10.1080/02664763.2018.1492527
dc.identifier.citationJournal Of Applied Statistics. Abingdon: Taylor & Francis Ltd, v. 46, n. 3, p. 395-415, 2019.
dc.identifier.doi10.1080/02664763.2018.1492527
dc.identifier.issn0266-4763
dc.identifier.urihttp://hdl.handle.net/11449/184292
dc.identifier.wosWOS:000456602500002
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofJournal Of Applied Statistics
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectSeasonal transition probabilities
dc.subjectBayesian inference
dc.subjectMarkov chain Monte Carlo algorithms
dc.subjectair pollution
dc.subjectMexico City
dc.titleApplication of a non-homogeneous Markov chain with seasonal transition probabilities to ozone dataen
dc.typeArtigopt
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbbcf06b3-c5f9-4a27-ac03-b690202a3b4e
relation.isOrgUnitOfPublication.latestForDiscoverybbcf06b3-c5f9-4a27-ac03-b690202a3b4e
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos