Publicação: A Robust Restricted Boltzmann Machine for Binary Image Denoising
Nenhuma Miniatura disponível
Data
2017-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Ieee
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
During the image acquisition process, some level of noise is usually added to the real data mainly due to physical limitations of the acquisition sensor, and also regarding imprecisions during the data transmission and manipulation. Therefore, the resultant image needs to be processed in order to attenuate its noise without loosing details. Machine learning approaches have been successfully used for image denoising. Among such approaches, Restricted Boltzmann Machine (RBM) is one of the most used technique for this purpose. Here, we propose to enhance the RBM performance on image denoising by adding a posterior supervision before its final denoising step. To this purpose, we propose a simple but effective approach that performs a fine-tuning in the RBM model. Experiments on public datasets corrupted by different levels of Gaussian noise support the effectiveness of the proposed approach with respect to some state-of-the-art image denoising approaches.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 390-396, 2017.