Logotipo do repositório
 

Publicação:
A Robust Restricted Boltzmann Machine for Binary Image Denoising

dc.contributor.authorPires, Rafael
dc.contributor.authorLevada, Alexandre L. M.
dc.contributor.authorSouza, Gustavo B.
dc.contributor.authorPereira, Luis A. M.
dc.contributor.authorSantos, Daniel F. S. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:13Z
dc.date.available2018-11-26T17:48:13Z
dc.date.issued2017-01-01
dc.description.abstractDuring the image acquisition process, some level of noise is usually added to the real data mainly due to physical limitations of the acquisition sensor, and also regarding imprecisions during the data transmission and manipulation. Therefore, the resultant image needs to be processed in order to attenuate its noise without loosing details. Machine learning approaches have been successfully used for image denoising. Among such approaches, Restricted Boltzmann Machine (RBM) is one of the most used technique for this purpose. Here, we propose to enhance the RBM performance on image denoising by adding a posterior supervision before its final denoising step. To this purpose, we propose a simple but effective approach that performs a fine-tuning in the RBM model. Experiments on public datasets corrupted by different levels of Gaussian noise support the effectiveness of the proposed approach with respect to some state-of-the-art image denoising approaches.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2015/09169-3
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent390-396
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2017.58
dc.identifier.citation2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 390-396, 2017.
dc.identifier.doi10.1109/SIBGRAPI.2017.58
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/163867
dc.identifier.wosWOS:000425243500052
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleA Robust Restricted Boltzmann Machine for Binary Image Denoisingen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos