Logotipo do repositório
 

Publicação:
Air and Steam Gasification of Almond Biomass

dc.contributor.authorMcCaffrey, Zach
dc.contributor.authorThy, Peter
dc.contributor.authorLong, Michael
dc.contributor.authorOliveira, Melina [UNESP]
dc.contributor.authorWang, Li
dc.contributor.authorTorres, Lennard
dc.contributor.authorAktas, Turkan
dc.contributor.authorChiou, Bor-Sen
dc.contributor.authorOrts, William
dc.contributor.authorJenkins, Bryan M.
dc.contributor.institutionARS
dc.contributor.institutionUniv Calif Davis
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionNamik Kemal Univ
dc.date.accessioned2019-10-04T12:15:40Z
dc.date.available2019-10-04T12:15:40Z
dc.date.issued2019-08-21
dc.description.abstractExperiments were performed on a laboratory scale fluidized bed gasifier to characterize the gasification products of almond shell and hull removed in nut processing operations and to determine the effect of gasifying media on bed agglomeration. The higher heating value of syngas during air gasification of almond biomass ranged from 4 to 6 MJ m(-3) while gas concentrations ranged from 14 to 18% H-2, 3-4% CH4, 43-50% N-2, 16-19% CO, and 16-17% CO2. For steam gasification, higher heating value was 10-12 MJ m(-3) and gas concentrations were 35-40% H-2, 5-7% CH4, 17-21% N-2, 18-21% CO, and 16-18% CO2. The high level of potassium in the almond shells led to strong corrosion and bed agglomeration due to flue gas transport of potassium compounds. These resulting pervasive kalsilite reactions were significantly worse under air gasification than under steam gasification. As a result of prolonged duration and elevated temperature approaching 1,000 degrees C, the corrosinal reaction changes to formation of an adhesive potassium distillate melt locally forming strong bonds. This latter is interpreted as a result of aerosol transported of melt particles.en
dc.description.affiliationARS, USDA, Albany, CA 94710 USA
dc.description.affiliationUniv Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA
dc.description.affiliationUniv Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA
dc.description.affiliationUniv Estadual Paulista, Inst Bioenergia IPBEN, Biocombustivel & Ensaio Maquina, UNESP, Jaboticabal, Brazil
dc.description.affiliationNamik Kemal Univ, Dept Biosyst Engn, Tekirdag, Turkey
dc.description.affiliationUnespUniv Estadual Paulista, Inst Bioenergia IPBEN, Biocombustivel & Ensaio Maquina, UNESP, Jaboticabal, Brazil
dc.description.sponsorshipCalifornia Energy Commission
dc.description.sponsorshipAlmond Board of California
dc.description.sponsorshipUSDA-NIFA/UC Agricultural Experiment Station
dc.description.sponsorshipCalifornia Almond Hullers and Processors Association
dc.description.sponsorshipIdCalifornia Energy Commission: PIR-07-002
dc.description.sponsorshipIdCalifornia Energy Commission: PIR-11-008
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.3389/fenrg.2019.00084
dc.identifier.citationFrontiers In Energy Research. Lausanne: Frontiers Media Sa, v. 7, 11 p., 2019.
dc.identifier.doi10.3389/fenrg.2019.00084
dc.identifier.issn2296-598X
dc.identifier.urihttp://hdl.handle.net/11449/184664
dc.identifier.wosWOS:000482651800001
dc.language.isoeng
dc.publisherFrontiers Media Sa
dc.relation.ispartofFrontiers In Energy Research
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectalmond biomass
dc.subjectair gasification
dc.subjectsteam gasification
dc.subjectpower generation
dc.subjectagglomeration
dc.titleAir and Steam Gasification of Almond Biomassen
dc.typeArtigopt
dcterms.rightsHolderFrontiers Media Sa
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Pesquisa em Bioenergia, Rio Claropt

Arquivos