Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Optimum-Path Forest Ensembles to Estimate the Internal Decay in Urban Trees

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Research on urban tree management has recently grown to include various studies using machine learning to address the tree’s risk of falling. One significant challenge is to assess the extent of internal decay, a crucial factor contributing to tree breakage. This paper uses machine and ensemble learning algorithms to determine internal trunk decay levels. Notably, it introduces a novel variation of the Optimum-Path Forest (OPF) ensemble pruning method, OPFsemble, which incorporates a “count class” strategy and performs weighted majority voting for ensemble predictions. To optimize the models’ hyperparameters, we employ a slime mold-inspired metaheuristic, and the optimized models are then applied to the classification task. The optimized hyperparameters are used to randomly select distinct configurations for each model across ensemble techniques such as voting, stacking, and OPFsemble. Our OPFsemble variant is compared to the original one, which serves as a baseline. Moreover, the estimated levels of internal decay are used to predict the tree’s risk of falling and evaluate the proposed approach’s reliability. Experimental results demonstrate the effectiveness of the proposed method in determining internal trunk decay. Furthermore, the findings reveal the potential of the proposed ensemble pruning in reducing ensemble models while attaining competitive performance.

Descrição

Palavras-chave

Ensemble Learning, Internal Trunk Decay, Machine Learning, Metaheuristics, Urban Tree Risk Management

Idioma

Inglês

Citação

Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 895-902.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso