Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Optimum-Path Forest Ensembles to Estimate the Internal Decay in Urban Trees

dc.contributor.authorCandido, Giovani [UNESP]
dc.contributor.authorMorelli, Luis Henrique [UNESP]
dc.contributor.authorJodas, Danilo Samuel [UNESP]
dc.contributor.authorVelasco, Giuliana Del Nero
dc.contributor.authorde Lima, Reinaldo Araújo
dc.contributor.authorda Costa, Kelton Augusto Pontara [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2025-04-29T20:03:11Z
dc.date.issued2025-01-01
dc.description.abstractResearch on urban tree management has recently grown to include various studies using machine learning to address the tree’s risk of falling. One significant challenge is to assess the extent of internal decay, a crucial factor contributing to tree breakage. This paper uses machine and ensemble learning algorithms to determine internal trunk decay levels. Notably, it introduces a novel variation of the Optimum-Path Forest (OPF) ensemble pruning method, OPFsemble, which incorporates a “count class” strategy and performs weighted majority voting for ensemble predictions. To optimize the models’ hyperparameters, we employ a slime mold-inspired metaheuristic, and the optimized models are then applied to the classification task. The optimized hyperparameters are used to randomly select distinct configurations for each model across ensemble techniques such as voting, stacking, and OPFsemble. Our OPFsemble variant is compared to the original one, which serves as a baseline. Moreover, the estimated levels of internal decay are used to predict the tree’s risk of falling and evaluate the proposed approach’s reliability. Experimental results demonstrate the effectiveness of the proposed method in determining internal trunk decay. Furthermore, the findings reveal the potential of the proposed ensemble pruning in reducing ensemble models while attaining competitive performance.en
dc.description.affiliationSão Paulo State University (UNESP) School of Sciences
dc.description.affiliationInstitute for Technological Research University of São Paulo
dc.description.affiliationUnespSão Paulo State University (UNESP) School of Sciences
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2022/16562-7
dc.description.sponsorshipIdFAPESP: #2023/12830-0
dc.format.extent895-902
dc.identifierhttp://dx.doi.org/10.5220/0013113600003912
dc.identifier.citationProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 895-902.
dc.identifier.doi10.5220/0013113600003912
dc.identifier.issn2184-4321
dc.identifier.issn2184-5921
dc.identifier.scopus2-s2.0-105001801780
dc.identifier.urihttps://hdl.handle.net/11449/305484
dc.language.isoeng
dc.relation.ispartofProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.sourceScopus
dc.subjectEnsemble Learning
dc.subjectInternal Trunk Decay
dc.subjectMachine Learning
dc.subjectMetaheuristics
dc.subjectUrban Tree Risk Management
dc.titleOptimum-Path Forest Ensembles to Estimate the Internal Decay in Urban Treesen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-8139-5491[1]
unesp.author.orcid0000-0003-4404-9765[2]
unesp.author.orcid0000-0002-0370-1211[3]
unesp.author.orcid0000-0002-7316-196X[4]
unesp.author.orcid0000-0002-0193-2518[5]
unesp.author.orcid0000-0001-5458-3908[6]
unesp.author.orcid0000-0002-6494-7514[7]

Arquivos

Coleções