Assessing Levodopa Effectiveness in Parkison's Disease during Gait Using Electroencephalogram and Machine Learning
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This study aims to investigate the temporal effects of levodopa, a fundamental medication for treating Parkinson's disease, a neurodegenerative condition that causes diverse motor alterations as it progresses. Our goal is to identify, at some specific intervals after the first levodopa intake, whether a machine learning approach can determine the effectiveness of that drug during gait exercises using electroencephalogram signals. The analysis will focus on identifying specific temporal patterns associated with levodopa administration and its impact on brain electrical activities during gait. We observed the proposed approach can accurately identify drug administration 90 minutes after the first levodopa intake, showing machine learning techniques are promising to cope with such a task.
Descrição
Palavras-chave
Deep Learning, Electroencephalogram, Parkinson's Disease, Signal Analysis
Idioma
Inglês
Citação
International Conference on Systems, Signals, and Image Processing.




