Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Assessing Levodopa Effectiveness in Parkison's Disease during Gait Using Electroencephalogram and Machine Learning

dc.contributor.authorPires, Rafael Gonçalves [UNESP]
dc.contributor.authorPereira, Clayton Reginaldo [UNESP]
dc.contributor.authorPenedo, Tiago [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorRoder, Mateus [UNESP]
dc.contributor.authorBarbieri, Fabio Augusto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:08:53Z
dc.date.issued2024-01-01
dc.description.abstractThis study aims to investigate the temporal effects of levodopa, a fundamental medication for treating Parkinson's disease, a neurodegenerative condition that causes diverse motor alterations as it progresses. Our goal is to identify, at some specific intervals after the first levodopa intake, whether a machine learning approach can determine the effectiveness of that drug during gait exercises using electroencephalogram signals. The analysis will focus on identifying specific temporal patterns associated with levodopa administration and its impact on brain electrical activities during gait. We observed the proposed approach can accurately identify drug administration 90 minutes after the first levodopa intake, showing machine learning techniques are promising to cope with such a task.en
dc.description.affiliationSão Paulo State University Departament of Computing, SP
dc.description.affiliationSão Paulo State University Departament of Physical Education, SP
dc.description.affiliationUnespSão Paulo State University Departament of Computing, SP
dc.description.affiliationUnespSão Paulo State University Departament of Physical Education, SP
dc.identifierhttp://dx.doi.org/10.1109/IWSSIP62407.2024.10634032
dc.identifier.citationInternational Conference on Systems, Signals, and Image Processing.
dc.identifier.doi10.1109/IWSSIP62407.2024.10634032
dc.identifier.issn2157-8702
dc.identifier.issn2157-8672
dc.identifier.scopus2-s2.0-85202885180
dc.identifier.urihttps://hdl.handle.net/11449/307286
dc.language.isoeng
dc.relation.ispartofInternational Conference on Systems, Signals, and Image Processing
dc.sourceScopus
dc.subjectDeep Learning
dc.subjectElectroencephalogram
dc.subjectParkinson's Disease
dc.subjectSignal Analysis
dc.titleAssessing Levodopa Effectiveness in Parkison's Disease during Gait Using Electroencephalogram and Machine Learningen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções