Publicação: Seam carving detection using convolutional neural networks
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Deep Learning techniques have been widely used in the recent years, primarily because of their efficiency in several applications, such as engineering, medicine, and data security. Seam carving is a content-aware image resizing method that can also be used for image tampering, being not straightforward to be identified. In this paper, we combine Convolutional Neural Networks and Local Binary Patterns to recognize whether an image has been modified automatically or not by seam carving. The experimental results show that the proposed approach can achieve accuracies within the range [81%-98%] depending on the severity of the tampering procedure.
Descrição
Palavras-chave
Computer Forensics, Convolutional Neural Networks, Deep Learning, Seam Carving
Idioma
Inglês
Como citar
SACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings, p. 195-199.