Logotipo do repositório
 

Publicação:
Seam carving detection using convolutional neural networks

dc.contributor.authorCieslak, Luiz Fernandoda Silva [UNESP]
dc.contributor.authorDa Costa, Kelton Augustopontara [UNESP]
dc.contributor.authorPaulopapa, Joao [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:55:25Z
dc.date.available2018-12-11T16:55:25Z
dc.date.issued2018-08-20
dc.description.abstractDeep Learning techniques have been widely used in the recent years, primarily because of their efficiency in several applications, such as engineering, medicine, and data security. Seam carving is a content-aware image resizing method that can also be used for image tampering, being not straightforward to be identified. In this paper, we combine Convolutional Neural Networks and Local Binary Patterns to recognize whether an image has been modified automatically or not by seam carving. The experimental results show that the proposed approach can achieve accuracies within the range [81%-98%] depending on the severity of the tampering procedure.en
dc.description.affiliationSao Paulo State University-UNESP
dc.description.affiliationUnespSao Paulo State University-UNESP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2016/19403-6
dc.description.sponsorshipIdFAPESP: #2016/25687-7
dc.description.sponsorshipIdCNPq: #306166/2014-3
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.format.extent195-199
dc.identifierhttp://dx.doi.org/10.1109/SACI.2018.8441016
dc.identifier.citationSACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings, p. 195-199.
dc.identifier.doi10.1109/SACI.2018.8441016
dc.identifier.scopus2-s2.0-85053394453
dc.identifier.urihttp://hdl.handle.net/11449/171461
dc.language.isoeng
dc.relation.ispartofSACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectComputer Forensics
dc.subjectConvolutional Neural Networks
dc.subjectDeep Learning
dc.subjectSeam Carving
dc.titleSeam carving detection using convolutional neural networksen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções