Logotipo do repositório
 

Publicação:
Pruning methods to MLP neural networks considering proportional apparent error rate for classification problems with unbalanced data

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This article deals with classification problems involving unequal probabilities in each class and discusses metrics to systems that use multilayer perceptrons neural networks (MLP) for the task of classifying new patterns. In addition we propose three new pruning methods that were compared to other seven existing methods in the literature for MLP networks. All pruning algorithms presented in this paper have been modified by the authors to do pruning of neurons, in order to produce fully connected MLP networks but being small in its intermediary layer. Experiments were carried out involving the E. coli unbalanced classification problem and ten pruning methods. The proposed methods had obtained good results, actually, better results than another pruning methods previously defined at the MLP neural network area. (C) 2014 Elsevier Ltd. All rights reserved.

Descrição

Palavras-chave

Unbalanced data, Pruning method, MLP neural network, Proportional apparent error rate

Idioma

Inglês

Como citar

Measurement. Oxford: Elsevier Sci Ltd, v. 56, p. 88-94, 2014.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação