Logotipo do repositório
 

Publicação:
Pruning methods to MLP neural networks considering proportional apparent error rate for classification problems with unbalanced data

dc.contributor.authorSilvestre, Miriam Rodrigues [UNESP]
dc.contributor.authorLing, Lee Luan
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2015-03-18T15:53:40Z
dc.date.available2015-03-18T15:53:40Z
dc.date.issued2014-10-01
dc.description.abstractThis article deals with classification problems involving unequal probabilities in each class and discusses metrics to systems that use multilayer perceptrons neural networks (MLP) for the task of classifying new patterns. In addition we propose three new pruning methods that were compared to other seven existing methods in the literature for MLP networks. All pruning algorithms presented in this paper have been modified by the authors to do pruning of neurons, in order to produce fully connected MLP networks but being small in its intermediary layer. Experiments were carried out involving the E. coli unbalanced classification problem and ten pruning methods. The proposed methods had obtained good results, actually, better results than another pruning methods previously defined at the MLP neural network area. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Estat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, UNICAMP, Dept Comunicacoes, Fac Engn Eletr & Computacao, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Estat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.format.extent88-94
dc.identifierhttp://dx.doi.org/10.1016/j.measurement.2014.06.018
dc.identifier.citationMeasurement. Oxford: Elsevier Sci Ltd, v. 56, p. 88-94, 2014.
dc.identifier.doi10.1016/j.measurement.2014.06.018
dc.identifier.issn0263-2241
dc.identifier.lattes3356686459975471
dc.identifier.urihttp://hdl.handle.net/11449/116657
dc.identifier.wosWOS:000340896400010
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofMeasurement
dc.relation.ispartofjcr2.218
dc.relation.ispartofsjr0,733
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectUnbalanced dataen
dc.subjectPruning methoden
dc.subjectMLP neural networken
dc.subjectProportional apparent error rateen
dc.titlePruning methods to MLP neural networks considering proportional apparent error rate for classification problems with unbalanced dataen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes3356686459975471
unesp.author.orcid0000-0002-0835-1601[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentEstatística - FCTpt

Arquivos