Logo do repositório

BAYESIAN REGULARIZED NEURAL NETWORKS APPROACH AND UNCERTAINTY ANALYSIS FOR REFERENCE EVAPOTRANSPIRATION MODELING ON SEMIARID AGROECOSYSTEMS

dc.contributor.authorSilva, C. de O. F. [UNESP]
dc.contributor.authorTeixeira, A. H. de C.
dc.contributor.authorManzione, R. L. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)
dc.date.accessioned2025-04-29T18:05:35Z
dc.date.issued2020-03-31
dc.description.abstractThe Penman–Monteith equation (PM) is widely recommended by The Food and Agriculture Organization (FAO) as the method to calculate reference evapotranspiration (ET0). However, the detailed climatological data required by the PM are not often available. The present study aimed to develop bayesian regularized neural networks (BRNN)-based ET0 models and compare its results with the PM approach. Forteen weather stations were selected for this study,located in Juazeiro (BA) and Petrolina (PE) counties, Brazil. BRNN were trained with different parameters choices and obtained R² between 0.96 and 0.99 during training and between 0.95 and 0.98 with validation dataset. Root mean squared error (RMSE) less than 0.10 mm.day-1 for BRNN when compared to PM denoted the good performance of the network using only air temperature, solar radiation and wind speed at average daily scale as input variable. Epistemic and random uncertainties were evaluated and precipitation was identified as the variable with the greatest uncertainty, being therefore discarded for modeling.en
dc.description.affiliationFaculdade de Ciências Agronômicas – FCA Unesp Câmpus de Tupã, SP
dc.description.affiliationUniversidade Federal de Sergipe – UFS Programa de Pós-Graduação em Recursos Hídricos, SE
dc.description.affiliationFaculdade de Ciências e Engenharia – FCE Unesp Câmpus de Tupã, SP
dc.description.affiliationUnespFaculdade de Ciências Agronômicas – FCA Unesp Câmpus de Tupã, SP
dc.description.affiliationUnespFaculdade de Ciências e Engenharia – FCE Unesp Câmpus de Tupã, SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 404229/2013-1
dc.format.extent73-84
dc.identifierhttp://dx.doi.org/10.18011/bioeng2020v14n1p73-84
dc.identifier.citationBrazilian Journal of Biosystems Engineering, v. 14, n. 1, p. 73-84, 2020.
dc.identifier.doi10.18011/bioeng2020v14n1p73-84
dc.identifier.issn2359-6724
dc.identifier.issn1981-7061
dc.identifier.scopus2-s2.0-85153630504
dc.identifier.urihttps://hdl.handle.net/11449/297109
dc.language.isoeng
dc.relation.ispartofBrazilian Journal of Biosystems Engineering
dc.sourceScopus
dc.subjectartificial intelligence in agriculture
dc.subjectBayes
dc.subjectmodelling
dc.subjectR
dc.titleBAYESIAN REGULARIZED NEURAL NETWORKS APPROACH AND UNCERTAINTY ANALYSIS FOR REFERENCE EVAPOTRANSPIRATION MODELING ON SEMIARID AGROECOSYSTEMSen
dc.titleUTILIZAÇÃO DE REDES NEURAIS COM REGULARIZAÇÃO BAYESIANA NA MODELAGEM DE EVAPOTRANSPIRAÇÃO DE REFERÊNCIA EM AGROECOSSISTEMAS SEMIÁRIDOSpt
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationef1a6328-7152-4981-9835-5e79155d5511
relation.isOrgUnitOfPublication.latestForDiscoveryef1a6328-7152-4981-9835-5e79155d5511
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Tupãpt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Botucatupt

Arquivos