Can nonlinear agrometeorological models estimate coffee foliation?
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
BACKGROUND: The loss of coffee leaves caused by the attack of pests and diseases significantly reduces its production and bean quality. Thus this study aimed to estimate foliation for regions with the highest production of arabica coffee in Brazil using nonlinear models as a function of climate. A 25-year historical series (1995–2019) of Coffea arabica foliation (%) data was obtained by the Procafé Foundation in cultivations with no phytosanitary treatment. The climate data were obtained on a daily scale by NASA/POWER platform with a temporal resolution of 33 years (1987–2019) and a spatial resolution of approximately 106 km, thus allowing the calculation of the reference evapotranspiration (PET). Foliation estimation models were adjusted through regression analysis using four-parameter sigmoidal logistic models. The analysis of the foliation trend of coffee plantations was carried out from degrees-day for 70 locations. RESULTS: The general model calibrated to estimate the arabica coffee foliation was accurate (mean absolute percentage error = 2.19%) and precise (R2adj = 0.99) and can be used to assist decision-making by coffee growers. The model had a sigmoidal trend of reduction, with parameters ymax = 97.63%, ymin = 9%, Xo = 3517.41 DD, and p = 6.27%, showing that foliation could reach 0.009% if the necessary phytosanitary controls are not carried out. CONCLUSION: Locations with high air temperatures over the year had low arabica coffee foliation, as shown by the correlation of −0.94. Therefore, coffee foliation can be estimated using degree days with accuracy and precision through the air temperature. This represents great convenience because crop foliation can be obtained using only a thermometer. © 2021 Society of Chemical Industry.
Descrição
Palavras-chave
air temperature, climate model, Coffea arabica, crop modeling, forecasting
Idioma
Inglês
Citação
Journal of the Science of Food and Agriculture, v. 102, n. 2, p. 584-596, 2022.





