Publicação: Feature Selection Using Geometric Semantic Genetic Programming
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Assoc Computing Machinery
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.
Descrição
Palavras-chave
Feature selection, Geometric Semantic Genetic Programming
Idioma
Inglês
Como citar
Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.