Logotipo do repositório
 

Publicação:
Feature Selection Using Geometric Semantic Genetic Programming

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Assoc Computing Machinery

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.

Descrição

Palavras-chave

Feature selection, Geometric Semantic Genetic Programming

Idioma

Inglês

Como citar

Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação