Logotipo do repositório
 

Publicação:
Feature Selection Using Geometric Semantic Genetic Programming

dc.contributor.authorRosa, G. H. [UNESP]
dc.contributor.authorPapa, J. P. [UNESP]
dc.contributor.authorPapa, L. P.
dc.contributor.authorOchoa, G.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSao Paulo Southwestern Coll
dc.date.accessioned2021-06-25T12:39:46Z
dc.date.available2021-06-25T12:39:46Z
dc.date.issued2017-01-01
dc.description.abstractFeature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationSao Paulo Southwestern Coll, BR-18707150 Avare, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/162509
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent253-254
dc.identifierhttp://dx.doi.org/10.1145/3067695.3076020
dc.identifier.citationProceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.
dc.identifier.doi10.1145/3067695.3076020
dc.identifier.urihttp://hdl.handle.net/11449/210101
dc.identifier.wosWOS:000625865500127
dc.language.isoeng
dc.publisherAssoc Computing Machinery
dc.relation.ispartofProceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion)
dc.sourceWeb of Science
dc.subjectFeature selection
dc.subjectGeometric Semantic Genetic Programming
dc.titleFeature Selection Using Geometric Semantic Genetic Programmingen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderAssoc Computing Machinery
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos