Publicação: Feature Selection Using Geometric Semantic Genetic Programming
dc.contributor.author | Rosa, G. H. [UNESP] | |
dc.contributor.author | Papa, J. P. [UNESP] | |
dc.contributor.author | Papa, L. P. | |
dc.contributor.author | Ochoa, G. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Sao Paulo Southwestern Coll | |
dc.date.accessioned | 2021-06-25T12:39:46Z | |
dc.date.available | 2021-06-25T12:39:46Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliation | Sao Paulo Southwestern Coll, BR-18707150 Avare, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/162509 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2015/25739-4 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.format.extent | 253-254 | |
dc.identifier | http://dx.doi.org/10.1145/3067695.3076020 | |
dc.identifier.citation | Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017. | |
dc.identifier.doi | 10.1145/3067695.3076020 | |
dc.identifier.uri | http://hdl.handle.net/11449/210101 | |
dc.identifier.wos | WOS:000625865500127 | |
dc.language.iso | eng | |
dc.publisher | Assoc Computing Machinery | |
dc.relation.ispartof | Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion) | |
dc.source | Web of Science | |
dc.subject | Feature selection | |
dc.subject | Geometric Semantic Genetic Programming | |
dc.title | Feature Selection Using Geometric Semantic Genetic Programming | en |
dc.type | Trabalho apresentado em evento | |
dcterms.rightsHolder | Assoc Computing Machinery | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |