Logotipo do repositório
 

Publicação:
Leaking of trajectories from the phase space of discontinuous dynamics

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion () and quasilinear diffusion () regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.

Descrição

Palavras-chave

diffusion, escape formalism, scaling

Idioma

Inglês

Como citar

Journal of Physics A: Mathematical and Theoretical, v. 48, n. 40, 2015.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação