Model-Agnostic Interpretation via Feature Perturbation Visualization
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
As machine learning algorithms increasingly replace traditional approaches, ensuring their reliability becomes crucial in applications where incorrect decisions can lead to serious consequences. This work proposes a novel model-agnostic in-terpretation approach using feature perturbations, along with a validated visualization tool. The approach enables better understanding of model decisions by domain experts, facilitating effective decision-making in real-world applications.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Brazilian Symposium of Computer Graphic and Image Processing, p. 19-24.